

EUROPEAN REGIONAL DEVELOPMENT FUND

DWA-IWAMA-2nd International Capacity Development Workshop "Energy Production in WWT"

Possibilities of sludge disintegration

K.-Georg Schmelz, EG/LV, Ole Kopplow, Niersverband February 2017, Boltenhagen/Ostsee

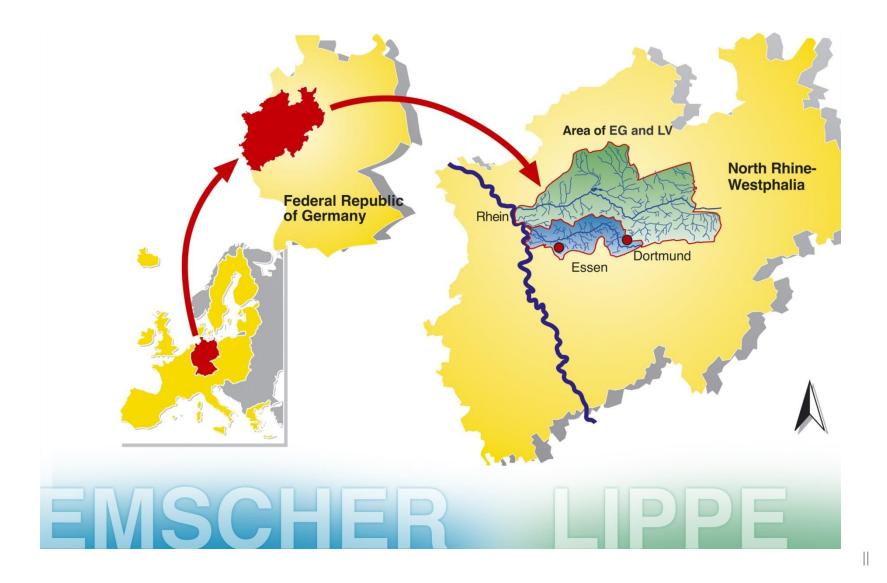
Possibilities of sludge disintegration GENOSSENSCHAFT EGLUE

Content

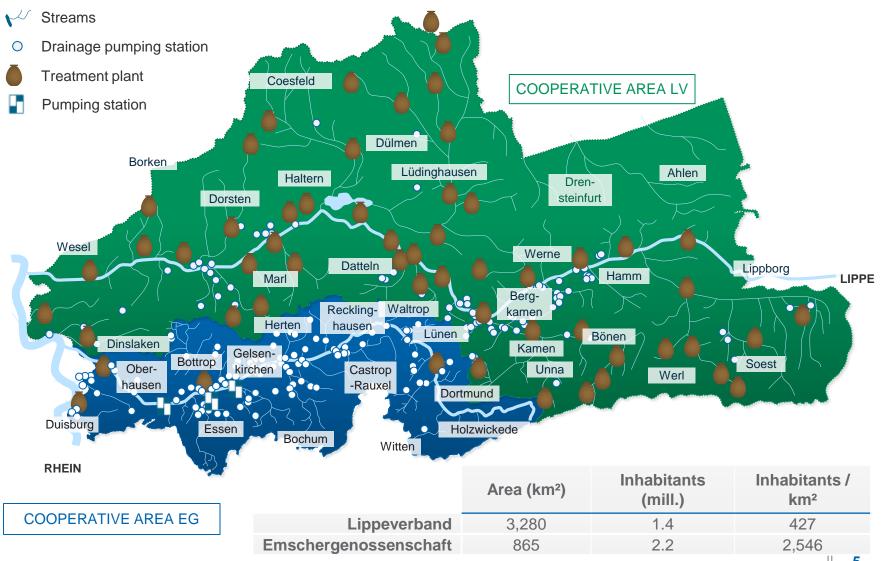
- 1. Introduction
- 2. Definition of Sewage Sludge Disintegration
- 3. Application areas
- 4. Methods for Disintegration
- 5. Results (overview)
- 6. Best practice for installation
- 7. Summary

CV – Personal Details

- Karl-Georg Schmelz
- 56 years, married, 3 Kids



- Since 1990 working for Emschergenossenschaft and Lippeverband
- Misc. working areas, currently in the R&D departement, responsible for sewage sludge and industrial wastewater
- Member of different specialist groups of the DWA (i.a. DWA KEK 1.6: Sewage Sludge Disintegration")
- Education of WWTP-operators and students at the University Duisburg-Essen

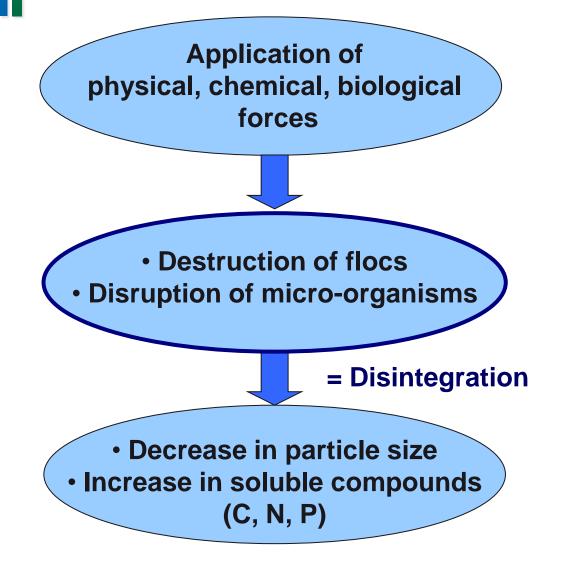

Operating Area EG/LV

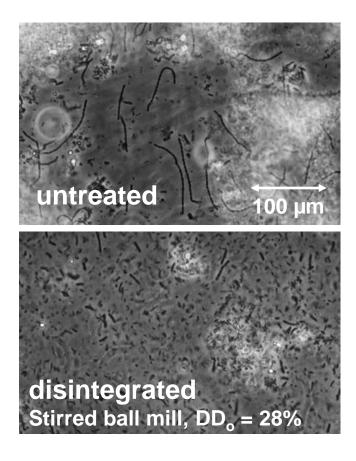
Our catchment area

Sewage Sludge Disintegration DWA-Specialist Group KEK 1.6

- Merkblatt DWA-M 302 (guidelines)
 - Published in December 2016
- Specialist group is working since 1996
 - 6 working documents
- Members:
 - Müller-Schaper, Johannes (Speaker)
 - Bormann, Hinnerk
 - Heinzmann, Bernd
 - Kopplow, Ole
 - Oles, Jürgen
 - Rand, Wiebke
 - Schmelz, Karl-Georg
 - Seiler, Kainan
 - Wagenbach, Anja

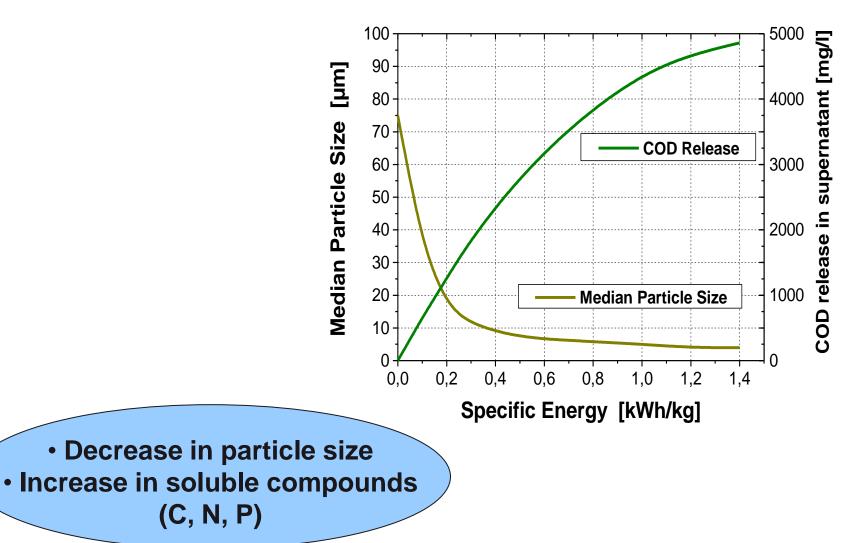
Definition of Sewage Sludge Disintegration

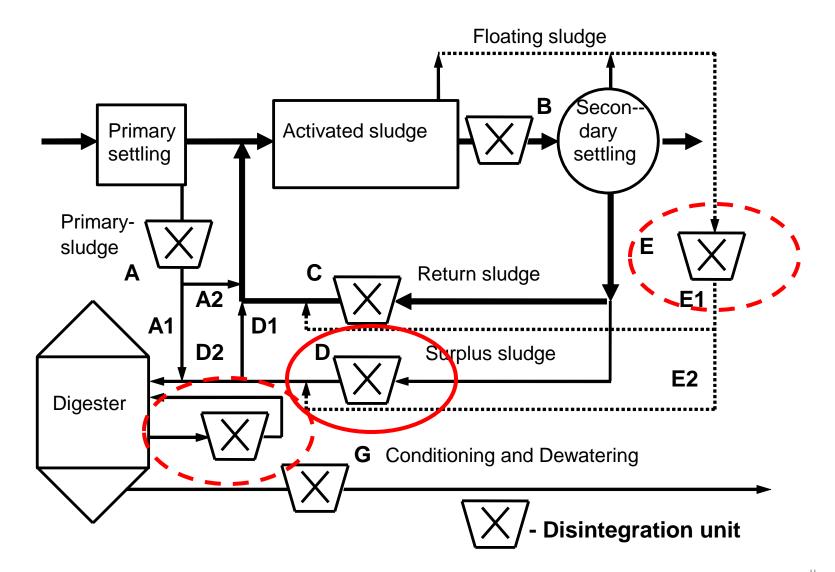

- **Disintegration** of sewage sludge through the **impact of external forces** (physical, chemical, biological)
- **Degree of disintegration** depends on used procedure, energy input and characteristics of sludge
 - Disintegration of flocs (reduction of particle size, destruction of microorganism chains; < 0,1 kWh/ kg DS)
 - Disintegration of cells (> 0,25 kWh/kg DS)


• Objectives:

- Increase bioavailability of the organic carbon
- improvement of the sludge characteristics

Disintegration of sewage sludge




Pre-treatment of sewage sludge

Locations for disintegration

Areas of Application (selection)

Optimisation of digesting process

- Increase of biogas production
- Reduction of sludge amount
- Improvement of dewatering behaviour

Prevention / Reduction of operating problems

- Reduction of bulking sludge and foam
- Improvement of settling characteristics
- Prevention of cloggings
- Reduction of sludge viscosity

Secondary effects (selection)

- Increased return load of WWTP (COD, N, P, particles)
- Reduction of particle size (higher demand of polymers or change of polymers)
- Formation of organic compounds with low bioavailability
- Increase of pollutant-concentrations (e.g. heavy metals)
- Odour

Methods for the Disintegration of sludge EMSCHER SCHER

Mochanical disintegration

ultrasonic, mills, high pressure homogenisers lysat centrifuge and other

Heat treatment

temperature range from 80 to 180 °C, heat exchangers or direct steam

Oxidation processes
 partial oxidation using ozone and hydrogen peroxide

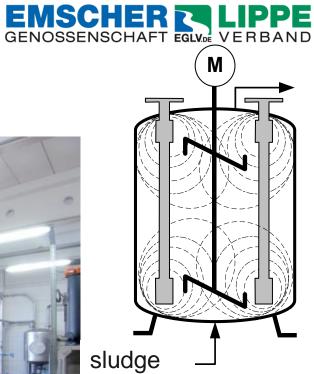
Biological treatment

Autoivic processes, enzyme dosage, special micro-organisms, detergents, micronutrients Methods available for full scale operation

- Chemical treatment
 using acids or alcali, pH values below 2 or over 12
- Freeze/thaw-treatment natural or technical freezing

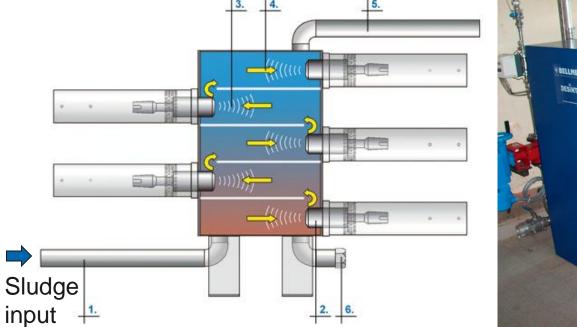
Combinations

Heat/chemical, Mechanical/biological and other


Ultrasonic Disintegration

- Generation of acustic waves with high frequency (> 20 kHz)
- Compression and expansion of the medium
- Cavitation and collapse of steam bubbles
- Destruction of flocs and cells through shear forces

Ultrasonic Disintegration Example: VTA

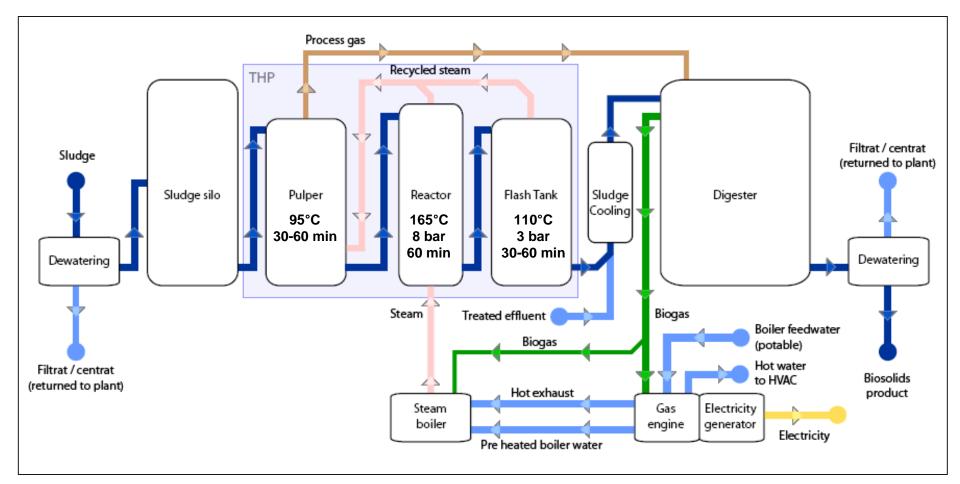


Ultrasonic Disintegration Example: Ultrawaves/Sonotronic

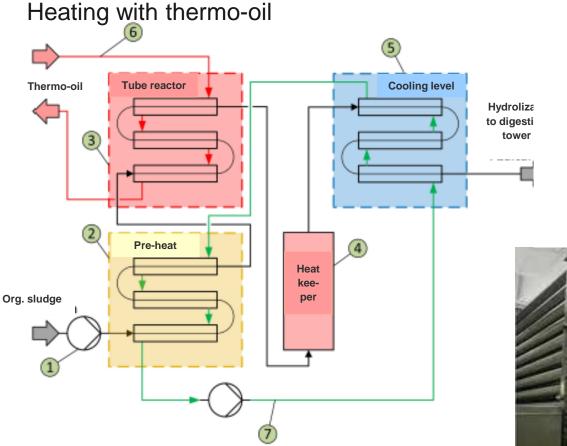
Thermal Disintegration

- Input of heat (< 100 °C normal pressure, > 100 °C high pressure)
- Use of heat exchangers or steam injection
- Chemical and physical reactions
- Changes in cell-structure
- Break up of bio-chemical structures
- From 170 °C up increase of hardly biodegradable compounds (Maillard-reaction)

Thermal hydrolysis

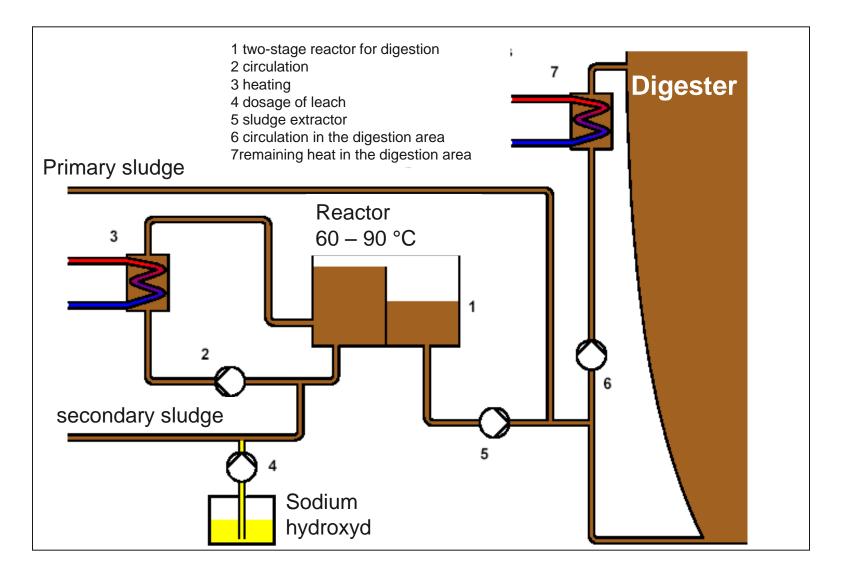

- Provider: Cambi, Veolia, (Stulz), Haarslev …
- Working temperature 150 170 °C
- Input of heat: generally by steam injection

Thermal hydrolysis Example: CAMBI



1 plant was operated in Germany (Geiselbullach)

Thermal disintegration Example: Stulz (Lysotherm)



1 operating plant in Germany (Lingen)

Chemical-thermal disintegration Example: Pondus

Chemical-thermal disintegration Example: Pondus

- Treatment-temperature between 60 and 90 °C
- Additional dosage of sodium hydroxyd (ca. 2 l/m³)
- Use of exeed heat of the CHPP by heat exchanger
- Several operating facilities in Germany (Gifhorn, Ratekau, Uelzen)
- Capacity 700 1 000 t DS/a surplus sludge

- Catalysing the degradation
- Enzymes are specific for substrate and effect
 - "key lock principle"
- Speeding up the degradation of long-chained compounds
- Start up-dosage at the beginning (inoculation)
- Further dosage dependent on the sludge amount

Assessment of selected techniques GENOSSENSCHAFT EGL

Ultrasonic

- Simple to integrate, low investment
- Limited effects (more biogas, low effect on dewatering result, effects direct dependent on energy input)
- Reasonable e.g. for poor working digesters

Thermal Disintegration

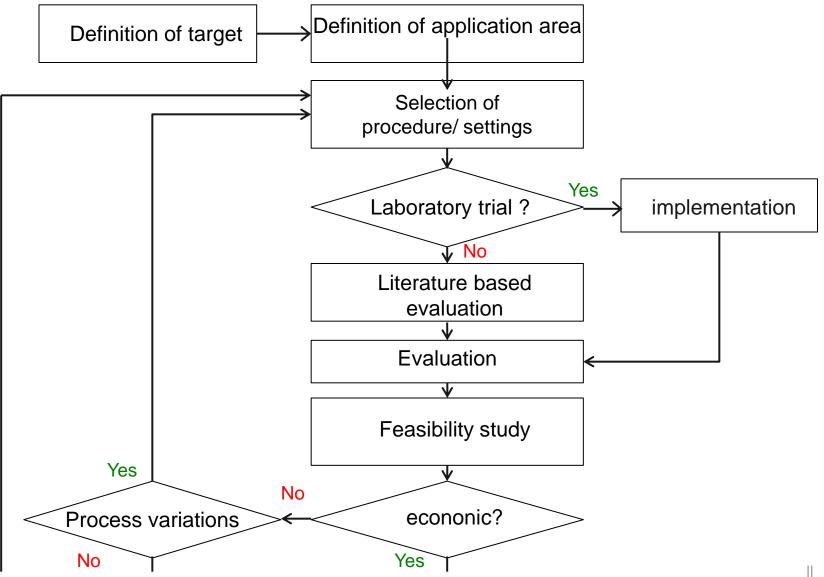
- Medium investment for thermal-chemical disintegration $(\rightarrow \text{medium sized WWTPs})$
- High investment for thermal hydrolysis (\rightarrow big WWTPs)
- Significant increase of gas production and degradation
- Improvement of dewaterability

Enzyms

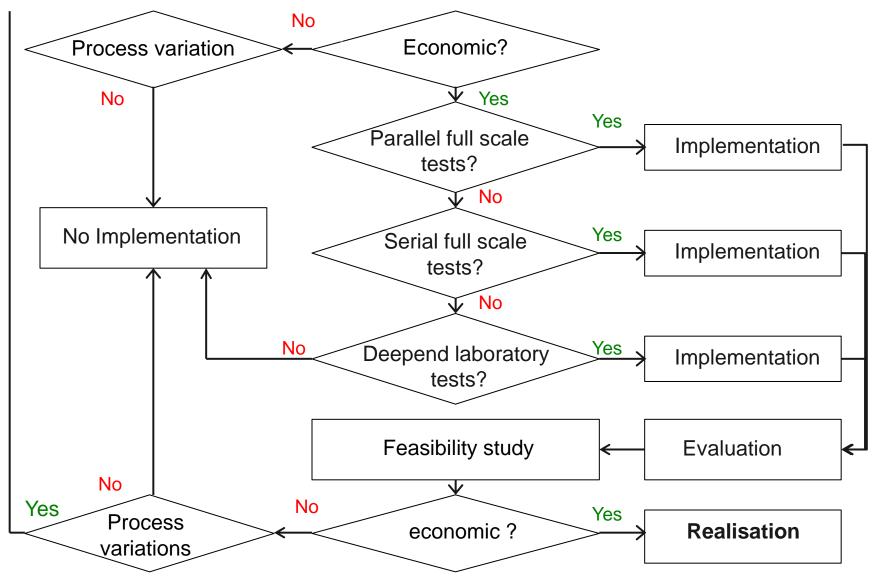
- Mainly product-costs, very low investment
- Limited effects (more biogas, improvement of clogging problems, very specific on the sludge)

Results (overview)

	Method	Results	Remarks
mechanical	mechanical 0,5 KWh/m³ – 20 KWh/m³	A _{CSB} up to 20 %; η _{oTM} up to 50 % higher; sometimes better settling behaviour and reduced foam	 Need of electric energy; Chemical composition is not changing if temperature is constant; Ultrasonic is used on several WWTPs
thermal	thermal 130 °C – 180 °C 130 kWh _{th} /m³ – 190 kWh _{th} /m³	A _{CSB} up to 50 %; η _{oTM} up to 70 % higher; less foam, better dewatering results	 Heat-energy cheaper than electric energy Heat recovery up to 95 % possible Formation of heavily degradable compounds Desinfection of the sludge possible several facilities for thermal treatment (160 – 180 °C) in Europe
electro- magnetic	High-performance pulse technique, electro-kinetic disintegration		 Only few investigations Low operating costs, simple to integrate Several operating facilities


	Technique	Results	Remarks
chemical	Hydrolysis	with chemicals A _{COD} up to 100 %;	 Neutralisation of the sludge with acids or bases, salting Particulary in the industrial WWT
	Oxidation (Ozon) 0,05 g O ₃ /g oDM– 0,2 g O ₃ /g oDM 0,19 kWh/kg DS and 2,5 kWh/kg DS	Dependent on Ozondosage A _{COD} up to 80 % η _{oDM} up to 20 % higher	 Positive effects with very low ozon- dosages no current investigations for anaerobic digestion
biologic	Hydrolysis	η _{oDM} up to 30 % higher	 Low investment, easy handling On some WWTPs in operation, positive effects on floating cover and cloggings possible
combi- nations	Thermal-chemical 60 °C – 70 °C 40 – 50 kWh/m ³ NaOH: 1,5 bis 2,0 l/m ³	A _{COD} up to 50 %; less foam, better dewatering results	 Use of low temperature heat Several facilities in Germany

Sewage Sludge Disintegration Selection of Techniques


Target for degree of disintegration A _{COD}	Generally required energy for disintegration	Suitable Methods
< 10 %	Low <10 kWh/m ³	 Electro-kinetic Disintegration Hydrocavitation Surfactants Enzyms Lysatcentrifuge Ultrasonic
10 % – 30 %	Medium >10 kWh/m³ – < 50 kWh/m³	UltrasonicHigh-pressure homogenisers
30 % – 50 %	High > 50 kWh/m³	 Thermal methods Oxidation (Ozon, H2O2) Thermal-chemical methods

Application of Sewage Sludge Desingetration EMSCHER LIPPE Basic Procedure I

Application of Sewage Sludge Desingetration Basic Procedure II

Application of Sewage Sludge Disintegration

- Preferred in secondary sludge
- Optimisation of sludge characteristics (viscosity, settling, foam)
- Relaese of organic carbon for better degredation especially in anerobic digestion
- Negative secondary effects are possible (N-reload)
- In most cases a high energy input is needed for a drastic increase of degredation
- Ultrasonic-, thermal disintegration and dosage of enzymes are successfull for optmisation of anaerobic digestion on several WWTPs
- Installing of a disintegration technique requires previous tests
- Besides the energy balance, the primary and secondary effects must be considered for an economic application of disintegration on WWTPs 1 30

Thank you for your attention!

-