

EUROPEAN REGIONAL DEVELOPMENT FUND

Advanced phosphorous and particle removal

Matthias Barjenbruch, TU Berlin IWAMA Webinar 4

9 April 2018

Importance of phosphorus

12. frequent element of the crust of earth

- Phosphorus is a chemical element. Symbol P ordinal number 15 and has a specific weight of 31 g/mol
- Greek φως-φορος "light carrying ", given by the shining of the white phosphorus in the reaction with oxygen.
- P was discovered in 1669 by Hennig Brand, a German pharmacist and alchemist.
- Phosphorus is essential important for all organism.
 - P-compounds are parts of DNA- and RNA-molecules
 - The phosphorus containing compounds ADP/ATP are playing and important parts in the energy metabolism of all cells.
- A man with 70 kg contains about 700 g phosphorus, from which 600 g is bound in the bones
- Important nutrient for the growth of plants and essential fertilizer
- Main resources: Morocco, South Africa, Russia, China and USA Resource remain only about 300 years

Example of eutrophication in the Baltic Sea

Objectives of P-removal

- Prevention of the eutrophication of water bodies especially in:
 - Lakes, dammed or tide influenced water bodies, Northern Sea of Baltic Sea
- Factor of minimum for the growth of plants: N : P = 7:1.
- Classification of lakes:
 - Eutrophic; nutrient rich lakes, in depth about 0-30%,
 O₂-saturation, only 2 m sight in depth, high production of algae,
 tot. P~ 45 85 μg/l
- River according the German Surface water ordinance
 - \Rightarrow 50 µg P/I large rivers in the middle mountain; inlets to the Baltic Sea
 - 50/100 μg P/l all other rivers
- Limiting value of WWTP in Germany according wastewater ordinance
 - ▶ 10,000 < 100,000 PE: 2.0 mg P/I</p>
 - > 100,000 PE: 1.0 mg P/I
 - Special regional restrictions (e.g. Helcom agreement)!

Situation in Germany Measurement points, which exceed the

orientating value of total Phosphor

Interactive Water Managem

Some facts of the Baltic Sea

Baltic Sea facts A shallow (Ø depth: 53 m) and almost landlocked sea One of the largest bodies of brackish water in the world Salinity 2 -20 ‰ Unique and fragile ecosystems with naturally low numbers of species Highly sensitive to all kinds of pollution Surrounded by many large cities and regions with intensive agriculture and industry 85,6 mio. people; Neighbouring countries: 9 Catchment: 1,7 mio. km² Some of the busiest shipping lanes in the world

Source: Helcom

Treatment plant >10,000 PE (Left); Land cover, catchment area and sub-basins (right) of the Baltic Sea

P-Emission into the baltic sea (2006)

berlin

SW

Source: Helcom

10

Area-specific riverine phosphorus inputs (kg/km²·a)

Proportion of different sources (in %) contributing to the phosphorus inputs into the Baltic Sea in 2006.

a) Total waterborne phosphorus 28,370 t

Source: Helcom

Cerlin CM

Taivallahti Bay, Helsinki, July 2013

Rügen, July 2013

Constant of the

ia A male

EN THE

Status of the Baltic Sea

Origin and estimation of the specific P-load in municipal sewage [in g P / (E-d)]

Origin of phosphorus	1975	2015
Metabolism products	1.6	1.6
Washing powder for textiles	2.25	0
Household detergents/washing-up liquid	0.75	0.24
Other P-sources	0.4	0.05
Sum, related to PE	5.0	1.8
Industry/trade/settlements (as PE)	1.2	1.2
Average Concentration in Germany (mg/l)	14	5.6

Only ortho-phosphate (PO₄-) (68% of the inlet) can be removed from the water by precipitation and following particle separation! Upcoming fraction of organic solved and none solved phosphorus phosphonate, hardly degradable organic P-compounds from textile industry and from heat-/power-production

Fractions of Phosphours in the sewage

 \rightarrow P-compounds not reactive with flocculants

berlin

snrP effluent values of biofilter Comparison to litrature

berlin

Chemical and biological aspects

Chemical phosphorus removal Coagulant and reactions

Applying metal salts:

$$\overset{e; AI}{Me^{3+}} + PO_4^{3-} \Rightarrow MePO_4$$

Reaction with the coagulant (example iron chloride (FeCl₃):

 $\operatorname{FeCl}_{3} \cdot 6 \operatorname{H}_{2}O + \operatorname{PO}_{4}^{3} \Rightarrow \operatorname{FePO}_{4} + 3 \operatorname{Cl}^{-} + 6 \operatorname{H}_{2}O$

Unavoidable by-reaction (Building of (Hydroxide flocs):

 $FeCl_3 \cdot 6 H_2O + 3 H_2O \Rightarrow Fe(OH)_3 + 3 H^+ + 3 Cl^- + 6 H_2O$

Building of hydroxides requires always an overdosage of coagulant $\rightarrow \beta$ value

And an additional sludge production

Applying calcium (2 different precipitation products):

 $5Ca_2^+ + 3PO_4^{3-} + OH^- \Rightarrow Ca_5(PO_4)_3OH$ $Ca^{2} + CO_{3}^{2}$

 $\Rightarrow CaCO_{2}$

(Hydroxylapatit) (Calciumcarbonate)

Precipitation Co-flocculation Flocculation 2 Dosage of coagulant

20

Equilibrium Phosphate and Fe, Al, Ca-Concentrations

Interactive Water Man

Calculation of the amount of the precipitant

B-value: relative amount of precipitant with the unit [mol Me/mol X_{P,Prec}]

 $\beta_{prec} = \frac{X_{Me} / AM_{Me}}{X_{P,Fall} / AM_{P}} \quad [mol Me / mol P]$

 β = 1,0 stochiometric dosage

 β = 1,5 50 % over stochiometric dosage

with:

$$X_{P,prec} = C_{P,In} - C_{P,out} - X_{P,BM} - X_{P,DN} - X_{P,BioP}$$

AM_{Me}atomic mass of metal (mg/mmol),AM_Patomic mass of phosphors (mg/mmol)and the atomic mass AM:(P) Phosphor: 31; (Fe) iron 56; (AI) aluminium 27

According the kind of bounded P in the sludge:

 X_{PBM} = 1,0 % (nitrification, COD Elimination) X_{PBDN} = 0,5 % (denitrification) X_{PBioP} = 1,0 % (anaerobic tank)

Principle of the enhanced biological P-elimination

berlin

Advantages:

- No additional agents (flocculants) necessary
- Decrease of salts in the effluent of a WWTP
- Lower additional sludge production
- No additional heavy metals in the sludge
- No disturbances possible for the nitrification process

Disadvantages

- Higher investment cost for the construction of the anaerobic tank
- Sometimes instable process, so often additional chemical dosage is required
- In winter time higher tendency of bulking sludge
- High content of volatile fatty acids (> 100 mg/l)
- Sufficient O₂-input into the activated tank to realize a high P-uptake

Process technology of phosphorous removal

- Chemical, biological -

Processes of the chemical P-elimination

Dosage of the precipitation agent

- at locations with by flow increase turbulence
- in short distance of the storage tank
- hydraulic direct jump
 - Increase of the cross section,
 - absorption chamber of weirs,
 - Drop construction
 - junction of part flows
- Installation of mixer with a high frequency
- Installation of screens and static mixers
- Archimedes screw (e.g. filtration)
- Pressure side turbulence of pumps
- Aerated flow section

Protection pipe

Example of good location for the dosage of precipitations agents

berlin

Examples of location for dosage

Bad solution

- bad mixing of the flocculant
- durch Randlage kaum B nearly no contact to the complete water surface

good solution

- Dosage into the change of flow direction
- but better would be over the whole cross-section

Examples of location for dosage

Good mixing conditions

- special injections form different side of the pipe
- Against the flow direction

- also good mixing conditions
- but danger of corrosion

Storage of the flocculation agent

- Sealed filling place
- Separated catchment of losses of the flocculation agent

Control concepts

Process	Size of WWTP	Amount of flocculation agent
Control according pre-seted time	Not recommendable (only small WWTP)	
Control according a flow graph	Small WWTP	-
Control in relation to the flow	Mid sized WTTP	+/-
Control according to the load in the inlet	Large WWTP	++
Control of C _{PO4-P,Effluent}	Large WWTP	++

TMLNU, 2009, changed

Enhanced biological-P-removal (Bio-P) Phoredox-process (Detention time: 0,5 to 0,75 h)

Excess Sludge

Advanced Phosphorous removal technologies

Processes for advanced P-removal

 First step: Residual precipitation and flocculation of Phosphorous

Dosage of agent and flocculation tank is required

- Post precipitation and separation of the flocs with:
 - Settling tank, Lamella separator, flotation
 - Micro-sieve
 - Cloth filter

berli

- Coagulation filtration
 - Down flow deep bed filter
 - Discontinuously back washed
 - Continuously
- Membrane-filtration (post positioned)
- Biomembrane-reactor

Operational results of lamella separator Post-precipitation (5 plants)

	AFS _o ¹⁾	AFS_{e}	η	gesP _o	gesP _e	η	CSB_{o}	CSB_{e}	η
lamella	[mg/L]	[mg/L]	[%]	[mg/L]	[mg/L]	[%]	[mg/L]	[mg/L]	[%]
Average	9,5	3,0	73	4,46	0,62	86	38	36	29
Minimum	13,0	0,3	-	2,14	0,21	75	34	24	29
Maximum	6,6	6	-	5,81	1,44	92	42	90	30

Modern Micro-sieve (Hydrotech)

- closed meshed, monofile texture (width 10 100 μm)
- System is only damed to 2/3 of the diameter
- Filter velocity $v_{F,TW} \approx 10,0$ m/h 20,0 m/h
- Smaller particles than mash width removable (5% open space)
- Cleaning with high pressure injection
- Low energy costs by gravity flow
- TSS-removal, P-Elimination

- Pre-located two stage coagulation suitable to reached P effluent value < 0.08 mg/L.
 - ➡ E.g. with 2 mg/L PACI (Polyaluminiumchloride) and 0,6 mg/L FHM (flocculation agent) → 0,06-0,065 mg/L

- Formally small fibred needle felt cloth (width 10 10 μm) today Pile fabric
- Filter velocity v_{F,DW,RW} ≈ 10,0 m/h
- Surface load of particles < 400 g/(m²·h); TSS_{in} max. 40 mg/l
- Suitable for TSS- and P-removal

Interactive Water

Cloth filtration

Disc-filter; Example WTP Oldenburg

- 14 x 60m² Disc filter
- Total filter surface 840 m²
- Maximum flow: 5,800 m³/h
- Today world wide largest disc cloth filter
- Built in 2006

SW

- Effluent < 5 mg/l TSS</p>
- Microplastic removal

P-Elimination with cloth filtration Pole fabric coated

berlin

Sr

Effluent < 0,1 mg/l P_{tot} with precipitation and pile fabric

Deep bed filter

Down-flow granular media filter

berlin

Intermediated backwashed by flap flushing

Down-flow granular media filter Intermediated backwashed by flap flushing

Operational results of coagulation Filtration

berlin

SW.

Stay below probability TP-Concentration in In- and outlet of a coagulation filter Dosage of Fe³⁺ and different v_F

berlin

Continuously operating filter plants Up-flow-Operation

Phosphorous removal Example WTP Ratzeburg

Interactive Water Managemen

Uhrzeit

Post located membrane filtration

- Variants of modules
 - pipe-, capillary-, Hollow fibre and surface module)
- Membrane material (organic inorganic)
- Pore size from 0,01 to 0,2 μm
- Pre-located granulated filter necessary (removal of particles > 500 μm)
- Cleaning with gas ca. all 30 min.
- Flux-rate 41.6 l/(m²·h) with 1.3 bar starting pressure
- Energy consumption: 0.2 kWh/m³
- Results
 - TP-Concentration from 0.2 1 mg/L down to < 0,05 mg/L in the effluent; monthly average 0.025 – 0.045 mg/L
 - \Rightarrow β-value = 2 5; no coagulant agents

TP-Effluent of Biomembrane reactor Germany

Interactive Water Managemen

Thank you for your attention

Prof. Dr.-Ing. Matthias Barjenbruch Head of Dep. of Urban Water Management, TU Berlin, Germany <u>matthias.barjenbruch@tu-berlin.de</u> http://www.siwawi.tu-berlin.de/menue/

EUROPEAN UNION

EUROPEAN REGIONAL DEVELOPMENT FUND

IWYWY