IWAMA 4th International Capacity Development Workshop: Smart Sludge Management

End-of-Waste for sewage sludge compost in Estonia – startup of the certification system

Mait Kriipsalu

Estonian University of Life Sciences

Circular Economy

- End-of-waste law in Estonia:
 - EoW for biowaste compost
 https://www.riigiteataja.ee/akt/119122015010?leiaKehtiv
 - EoW for biowaste digestate
 https://www.riigiteataja.ee/akt/119052016009
 - EoW for sludge compost
 https://www.riigiteataja.ee/akt/128072017004

Driver: EoW for biowaste compost

- EU target is to recycle 65 % of municipal waste by 2035 (ec.europe.eu);
- Currently there is 240,000,000 t/y municipal waste in EU27 (Eurostat); out of which 150,000,000 t/y (65 %) is organic.

Conclusion: we can not ignore biowaste

Circular Economy

- Let us recycle nutrients from sewage sludge back to fields!
 - Good for environment, but tricky from legal point of view.
- Sludge compost is still waste by definition!
- How to sell and buy waste?
 - Easy with some materials (glass, paper)
 - Difficult with many material types (C&D, biowaste, sludge)
- **Conclusion**: we need end-of-waste regulation for biowaste (but also to digestate, sludge, biofuels, and many other things)

End-of-waste criteria for biowaste

Waste Framework Directive (EU) 2008/98/EC & Waste Act (EST): RT I, 25.11.2016, 6

Waste (compost or sludge compost) shall cease to be waste when it has undergone a recovery operation and complies with the following criteria:

- 1. Compost is commonly used for specific purposes;
- - 2. There is an existing market or demand for compost;
- X
- 3. The use of compost is lawful (it fulfils the technical requirements for the specific purposes and meets the existing legislation and standards applicable to products);
- 3
- 4. The use of compost will not lead to overall adverse impact on environmental or human health.
- Conclusion: Minister of Environment has to apply such criteria

Estonian Recycling Cluster (2010–2015)

OBJECTIVES

- To increase waste recycling rate
- To produce quality products from waste
- To increase the production capacity and volumes, joint marketing
- To increase the sales of the products & services.

ACTIVITIES

- Research
- Marketing and product development
- Image building
- Trainings and know-how

Waste to Products

Production of compost (incl sewage sludge)

Green areas, agriculture

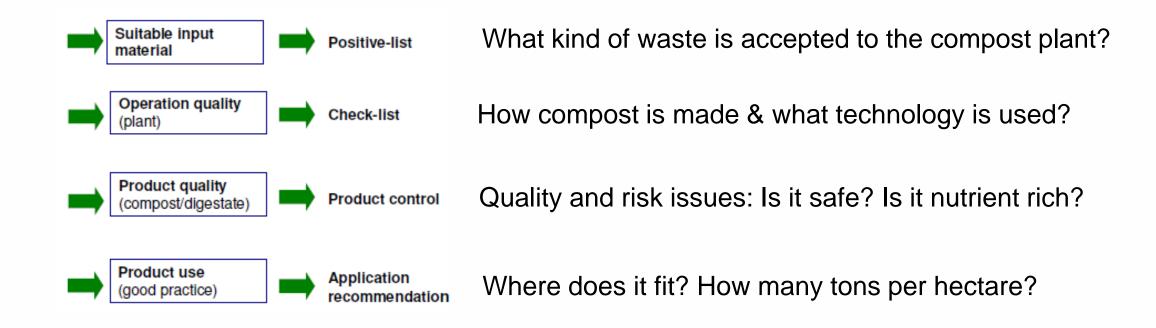
Production of solid recovered fuels (SRF)

Cement industry

Production of recycled aggregates (incl ashes)

Road construction

Law-making


- No EU directives on quality requirements for biowaste compost.
- National standards exist, for example:
 - Swedish Waste Management's requirements, RVF report 99:2 (AFR report 257)
 "Sjösättning av certifieringssystem för kompost och rötrest".
 - British Standard, The Publicly Available Specification 100 (BSI PAS 100) for composted materials. WRAP (Waste and Resources Action Programme) & AFOR (Association for Organics Recycling).
 - German Bundesgütegemeinschaft Kompost e.V. (BGK) & RAL quality assurance
- European Compost Network ECN http://www.compostnetwork.info/

ECN QAS

(European Compost Network, Quality Assurance Scheme)

ECN QAS (biowaste compost)

Quality parameters: consumer has to know it!

Quality criteria	Parameter	Dimension	Appraisal	
Soil	Organic matter	[% DM]	15 %, declaration	
improvement	Liming value (CaO)	[% DM]	declaration	
Fertilizing properties	Nitrogen (N) total	[% DM]	declaration	
	Phosphorus (P) total	[% DM]	declaration	
	Potassium (K) total	[% DM]	declaration	
	Magnesium (Mg) total	[% DM]	declaration	
Material	Maximum particle size	[mm]	declaration	
properties	Bulk density	[g/I FM]	declaration	
	Dry matter	[% FM]	declaration	
	Salinity / El. conductivity	[mS/m]	declaration	
	pH value		declaration	
Biological	Aerobic biological activity		declaration	
parameters	Plant response ¹⁾		declaration	

Risk parameters: producer has to avoid higher values

Precautionary quality criteria	Parameter	Limit value		
Hygiene	Salmonellae	Absent in 25 g dry matter		
Undesired ingredients and properties	Impurities (content)	≤ 0,5 % dry matter		
and properties	Weed seeds	≤ 2 seeds per liter		
Inorganic pollutants	Lead (Pb)	130 mg kg ⁻¹ dry matter		
	Cadmium (Cd)	1.3 mg kg ⁻¹ dry matter		
	Chromium (Cr)	60 mg kg ⁻¹ dry matter		
	Copper (Cu)1)	300 mg kg ⁻¹ dry matter ²⁾		
	Nickel (Ni)	40 mg kg ⁻¹ dry matter		
	Mercury (Hg)	0.45 mg kg ⁻¹ dry matter		
	Zinc (Zn)1)	600 mg kg ⁻¹ dry matte/ ^{e)}		

Role of EMU

- EMU was asked to help drafting the criteria
 - We adopted ECN QAS
- EMU did large-scale study about safe use of compost in agriculture
 - Lab tests of composts, lab and field tests of crops on compost-amended soils, stability tests
- EMU participated in developing a ceritification system which is currently in operation

End-of-waste criteria

Waste Framework Directive (EU) 2008/98/EC & Waste Act (EST): RT I, 25.11.2016, 6

Waste (compost) shall cease to be waste when it has undergone a recovery operation and complies with the following criteria:

- 1. Compost is commonly used for specific purposes;
- 2. There is an existing market or demand for compost;
- 3. The use of compost is lawful (it fulfils the technical requirements for the specific purposes and meets the existing legislation and standards applicable to products);
- 4. The use of compost will not lead to overall adverse impact on environmental or human health.

Minister of environment applied such criteria: Requirements for producing compost from Biodegradable waste: RT I, 19.12.2015, 10

How does it work?

Is it waste or product?

YOU decide!

Waste Framework Directive 2008/98/EC gives us criteria (4 tk)

National regulation for biowaste **or** National Fertilizer directive **or** EU Fertilizer Directive **or** National regulation for sludge **or** National regulation for digestate **or** similar gives us values

But Who decides that the procedure is lawful?

It is a **Certification body!** ECN or National (in Estonia it is Foundation 'Certification Centre of Recycled Materials')

But Who decides that national certification body is acting lawful?

It is National Accreditation Center!

Certification body

- SA Taaskasutatavate Materjalide Sertifitseerimiskeskus
- Peterburi tee 46, Tallinn 11415 Tallinn
- +372 6181 61
- www.recycling.ee; info@recycling.ee
- margit@recycling.ee & marit@recycling.ee

Timeline for biowaste compost certification system

Compost quality research

Demo certification

Biowaste compost ordinance

Estonian
Recycling
Competence
Center

Developing certification documents

Certification
Centre of
Recycled
Materials

Biowaste
Case 1:
certification
start.

Accreditation
Centre issued
certificate

Biowaste
Case 1:
certificate
issued.

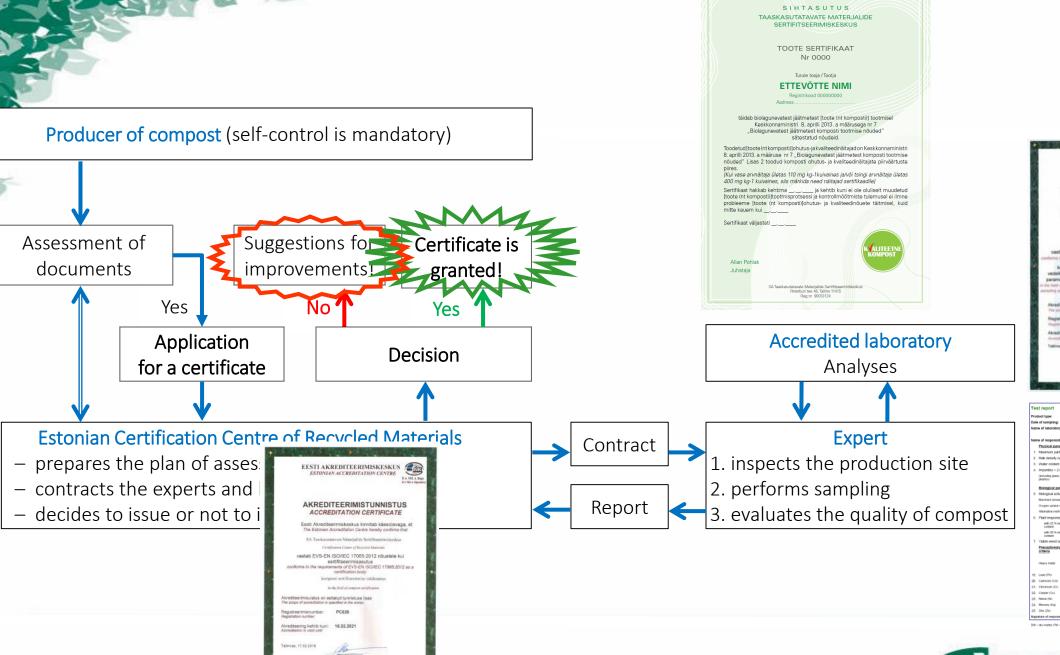
2011

2012

13.04.2013

2013 sept

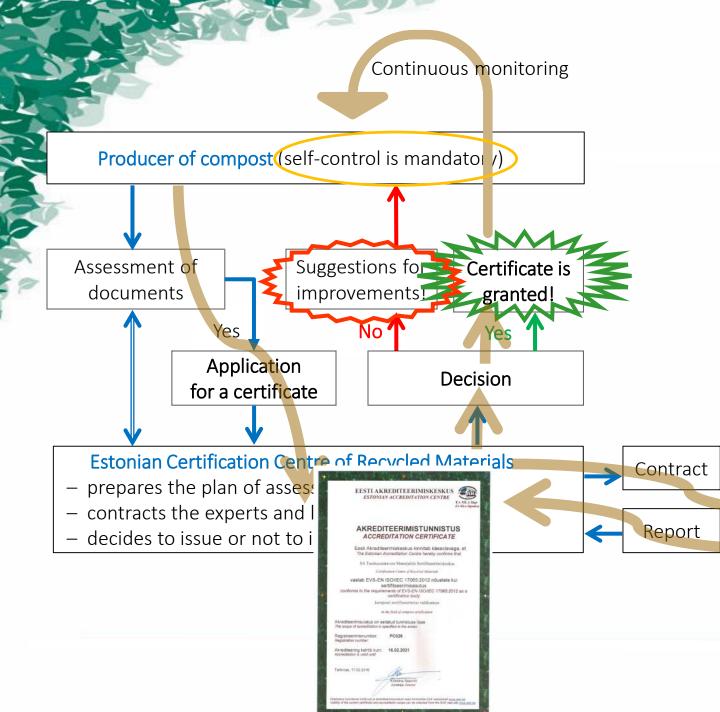
2014-2015


2015 June

2015 Dec

17.02.2016 1

16.03.2016



EESTI AKREDITEERIMISKESKUS

AKREDITEERIMISTUNNISTUS

Accredited laboratory

Analyses

Expert

1. inspects the production site

2. performs sampling

3. evaluates the quality of compost

					pean Compost Ity Assurance 5	
an	duct type:			Batch or	ide:	
Date of sampling: Name of laboratory		Sample No.:	Sample protocol No.: Laboratory No.:			
ian	ne of responsible person:					
	Physical parameters			Plant nutrients		
1.	Maximum particle size	mm	8.	Ntrogen total (N)		% DM
2.	Dulk density (volume weight)	91714	2.	Phosphate total (PyC	h)	% 06
3.	Water content	% FM	10.	Potassium total (K ₂ C	9	% DN
4.	Impurities > 2 mm (total)	% DM	11.	Magnesium total (Mg	(0)	% DN
	(including glass, metals and plantics)					
	Biological parameters			Soil improvement		
5.	Biological activity		12.	Organic matter (OM)		% D6
	Marimem temperature		13.	Liming value (CaO)		% D8
	Oxygen uptake rate		14.	Decirical conductivity	y	mS/a
	Attendive method		15.	pH (CaCl ₂)		
6.	Plant response (rel.)		16.	C/N ratio (calc, from	OM (LOI))	
	with 25 % hast substrate content.			Hygiene		
	with 50 % test substrate content.		17.	Salmonellae		
7.	Viable weed seeds	per I FM				
	Precautionary quality criteria					
		ECN-GAS	National	regulations	Sample	
	Heavy metal					
				mg/kg TM		
	Lead (Ph)	130				
	Cadmium (Cd)	1.3				
	Cliromium (Cr)	60				
	Copper (Cu)	110				
	Nickel (NI)	40				
	Mercury (Hg) Zinc (Zin)	0.45				

DM - dry matter; FM - thesh mats

Content of sludge ordinance

https://www.riigiteataja.ee/akt/128072017004

- Scope of the law & definitions
- Requirements for sludge treatment
- Requirements for managing co-composted biodegradable waste
- Requirements for reception of biodegradable wastes
- Requirements for composting facility
- Requirements for sampling
- Requirements for storage of compost
- Requirements for self-control system and record-keeping
- Certification authority
- Assessment of conformity of compost with requirements
- Disclosure of information concerning utilisation of compost

Timeline for sludge compost certification system

aquaConsult study on sludge

Draft law on Sludge **EofW**

Sludge EofW in foce!

Certification Centre, certification documents!

Case 1: start certification of sludge compost.

Accreditation Centre issued certificate

Case 1: time-out

2015

2016

19.07.2017

2017 summer 2017 summer 2017 autumn

Conclusions

- Quality of compost can not be a result of 'positive accident'.
- It has to be achieved 'by producers will'.
- I see self-control system as a key!
- Basic principle for EoW & Certification have to be similar for all materials.
- Certification should be recognised as help for produceres!

A S/OB/MTD xxx enesekontrolli plaar

Solagunevatest jäätmetest komposti tootmiseks rakendatava enesekontrolli plaani noutled. Enesekontrol on kohustusik AS/OOMTO xxx personalis, kee

- III kategooria jäätmed esmalt hägjapipppitakas, Operator kontrollib (seadme xxx) tiod ja andmete salvestamist västavasse andmebaasi. Selle kontroll smärk on Eesmärgiks seutut parameetrite jälgimine (70 C. aeg).
- emperatuuride õigsuses veendumiseks võrreidakse neid kalibreeritud mperatuuri mõõturiandmetega. Kes seda teeb ja kuidas fikseettaks
- 3. Üks kord. kvartalis tellitakse ühest partiist (viiest osaproovist) bakterioloogiline analūlis, milles uuritakse Eusberishia coli ja Salgonalja sisaktust (Terviseamet
- (miss libinud III kat ülülmele seganisel rohejäälmete ja tugiaineg pimub ainete vahekontade, tugiaine la mehhanismide puhtuse kordroll amine leiab aset kus? Miles seisneb kontrol?
- ning mehitanismide pulnuse kontroll. **Biopulps**, valmistatud kompost ja musi
- vus seites kontrollivormis. Kul sügavat möödetakse? Mitu niõõtmist auru ts? Andmed sisestatakse vastavasse andmebaasi. Kes seda teeb ja kuida
- Iga komposfigartii sõelumise järel tellitakse analüüs komposti keemilise koostis nääramiseks (Põltumajandusuuringute Keskus).
- red? Vajadusel kaetakse valevistoodang tuulekande vältmiseks.
- Närliste törieks on sõlmitud leping selliseid tõid tegeva ettevõttega. Kõlk
- 10. Defineeri partii ja kuidas sellest kohapesti aru saada (ilmastikukindet sitt)
- vrill peaks ciema štoks vastuvčiusladele márožud, kompostimis
- 17 Skeen sete koto, kuidas teritooriumi likuma peab. Ni ei toki minna lähedale l Kal jäätmetele, värske sette hunnikule.
- 13 Lisa steemie vertiuspiureering kuidas voolah vesi ja seigtus personalie, miks seda teadma ja arvestama peab. Kuidas aunad paiknevad
- momeetri näit minna. Käinumine juhul, kui avastutakse ohtik temperatuur (nt >90 C), nt aun aetakse tatak ... Süttimisvõimalkud kohad, nt reaktori sisemus. reaktori mootovosad, elektriosad.
- 16. Ohutus, kompostitolim. Kanna maski kui tolmab palju. Silmade kaltaeks prillid ette mpoetiauna peale valgumine ja varing.

Thank you!

mait.kriipsalu@emu.ee

