

EUROPEAN REGIONAL DEVELOPMENT FUND

Overview of process engineering approaches to phosphorus recovery

Matthias Barjenbruch TU Berlin, FG Siedlungswasserwirtschaft, Sekr. TIB 1B 16 Gustav-Meyer-Allee 25, D - 13355 Berlin Phone: +49 / (0) 30 / 314 72246; Fax: +49 / (0) 30 / 314 72248 e-mail: matthias.barjenbruch@tu-berlin.de

IWAMA 5th International Capacity Development Workshop, Kalmar Kalmar, June 15th 2018

Relevance of phosphorus Blessing and curse

- Phosphorus: 12th most common element in Earth's crust.
 Bottleneck of life, limits the biomass potential on earth! Asimov 1959
- Discovered in 1669 by Hennig Brand, German pharmacist and alchemist
- Phosphorous is essential, not synthesizable, not substitutable
 - Most important plant nutrient and significant plant fertilisers
- But also a curse!
 - Esters of phosphorous acids are neurotoxins/ chemical warfare agents (e.g. Sarin)
 - White phosphorus inserted in lethal gas and fire/incendiary bombs, 1st & 2nd World War and actually?
- Import dependency rate for Germany 100%
- Index of substitutability 0.91
- End-of-life-recycling utilization rate) 0 %

The resource phosphorus

- > 83,73 €/t P₂O₅ (+8,95%)
- Quality of ores decreases (contaminations Cd, U)

Phosphorus consumption

Europe

berlin

➡ 90% of phosphorus as fertiliser in agriculture

Germany

- 115.000 t P/a as mineral fertiliser
 50.000 37.490 t P/a as animal feedstuff
 10.000 20.000 t P/a as soaps and detergents
 10.000 3.200 t P/a foodstuff and beverages
 Up to 7.750 t P/a metal treatment
 4.300 2.230 t P/a water treatment
 4.000 1.120 t P/a flame retardants, plasticisers
 Ca. 1,5%)
 Recovery potential in Germany
 - Potential of recovery from WTTP's : 71.714 t/a
 - Theoretically up to ca. 60% of raw phosphate imports substitutable
 - Recycling P by agricultural utilisation of sewage sludge problematical (harmful substances, bioavailability for plants)

P-balance model plant (Baltic region Germany) spec. resultant wastewater 100 I/(PE-d)

German new sludge strategy for P-Recovery,,Klärschlammverordnung"

- WWTPs with a capacity > 100.000 PE
 - have to recover phosphorus after a transition period of 12 years
- WWTPs with a capacity > 50.000 PE
 - have to recover phosphorus after a transition period of 15 years
- Direct use of sewage sludge as fertilizer is not allowed after the transition period of 12/15 years

➡ Exemptions for small and medium WWTP → agricultural use possible

- Objectives for phosphorus recovery:
 - At least 50 % extraction efficiency
 - Lowering the P-Content < 20 g P/TDS</p>
 - No co-incineration of sludges containing > 20 g P/TDS

Hot spots for P-recovery from municipal wastewater

Kabbe, 2017

Processes for P-recovery

berlin

SW/W

P-recovery from sewage sludge Sludge liquor/sewage sludge

Pearl and Wasstrip process

 $\label{eq:mag_2} \begin{array}{l} Mg_2{}^{+} + NH_4{}^{+} + PO_4{}^{3-} + 6 \ H_2O \rightarrow MgNH_4PO_4 \bullet 6 \ H_2O \\ Recovery \ potential \ 30\% \end{array}$

AirPrex process

- 1. Aeration to strip CO₂ out + recirculate sludge
- 2. Addition of Magnesium Chloride (MgCl₂)
- 3. MAP- Crystallisation and sedimentation
- 4. MAP- Separation and washing

Continuous

reactor

CO₂ injection

Budenheim process (ExtraPhos)

- Only CO₂ as solvent
- DCP commercial product
- Enables "0"-waste-scenario in cement plants (new incineration capacity not necessary)

Sewage sludge

Gas balloon CO2

- Pilot in MZ (October 2016)
- Demonstration in Itzehoe planned

CO₂-Recycling

Dehydrated sewage sludge (recycling)

Worldwide operation of P-recovery plants from wastewater path (sludge rejects water)

berlin

21

P-recovery from sewage sludge Thermal

berlin

According to Montag, 2018

(Mono)-Incineration Example fluidised bed

- Net calorific value of sewage sludge might be < 4.000 kJ/kg TS
- For autothermic incineration (dewatering/drying is necessary)
- Temperatures 850 to 950°C
- Ash discharge by flue gas path
- Plant sizes: 2.000 to 4 · 45.000 t_{TS}
- Costs: 180 to 400 €/t_{TS}640 €/t_{TS}

Ermel 2014, adjusted

Sewage sludge gasification SynGas plant in Mannheim (5.000 t_{TS}/a)

- Sewage sludge has to be dried to < 90% TS</p>
- Gas mixture of CO_2 , CH_4 , N \rightarrow energy-rich
- Organic pollutants get burned

- Sewage sludge pellets (heavy metal precipitation by ceramic filter)
- Application as additive to asphalt respectively mono deposit

Gaiffi 2013

Hydrothermal carbonation (HTC) of sewage sludge

- Thermal treatment of dewatered sewage sludge
- Goal: high-efficient dewatering to up to > 65% TS
- Mass reduction and high net calorific value ("bio-coal")

Pyrolysis (e.g. Fa. GreenLife)

berlin

Technical data e.g.

- Capacity: 4.000 t TS/a with 25%
- Up to 50.000 PE
- Bio-coal production: up to 70 kg/h resp. 500 t/a
- Engine output: up to 500 kW per unit
- Operational limits: net calorific value > 6 MJ/kg humidity < 50%
- Thermal heat output: up to 150 kW (heat of gas exhaust)
- Installation as 20-feet-container

Future energetic usage of sewage sludge

	Gasification	Incineration	Pyrolysis	Hydrothermal carbonation (HTC)
Electricity generation	+++ (30%)	+ (15%)	+ (-)	-
Heat generation	+++ (40-80%)	++ (50-70%)	+(35%-50%)	- (fuel)
Nutrient recovery	+++	++	++	++
Economic feasibility	+++	+	-	-

- Pilot plant in Nuremberg (Nürnberg)
- Start-up in progress
- P-rich slag
- Metal deposition (recovery)

Source: www.sun.nuernberg.de

P-recovery from sewage sludge Wet-chemical

N

TetraPhos process (Remondis)

Quelle: Remondis Aqua Industrie GmbH

P-recovery from sewage sludge Thermal, chemical

berlin

According to Montag, 2018

- Recycled material: fertiliser from ash
- Efficiency of recovery referring to WWTP inflow: 90%

Technology Readiness Level (TRL)(TRL)

berlin

- TRL 9: Intensive proof of successful application at plant site, inclusively full documentation
- TRL 7: Prototype well integrated into plant site, nearly true to scale, technical feasibility proven
- TRL 5: Experimental set-up in operational environment, not integrated into existing systems
- TRL 4: Experimental set-up at laboratory
- TRL 3: Operational reliability proven, not integrated

TRL 1: Observation and description of basic principle

Quelle: www. fz-juelich.de/iek/iek-3/DE/Forschung/BGE/Brennstoffzellenseiten/Systementwicklung/Bild 30

Evaluation of degrees of mature technology

Future prospects

- Legal regulations are set finite in Germany
 - **Report on assurance of phosphorus recovery**, § 3a (till 31.12.2023)
 - Prohibition of soil-related utilisation after 12 years (1.1.2029/1.1.2032 [100.000/50.000 PE])
 - Sewage sludge interim storage?
- Is it in the responsibilities of sewage sludge producers?
 → phosphorus recovery
- Practicability of P-recovery processes has to be examined and developed further on
- Recovered P-compounds have to be suitable for recycling
- Profounded evaluation of economic feasibility and sustainability is still missing
- P-recovery isn't P-recycling yet!!

Market has to be developed