

Variation of loading of WWTP - seasonal influences

Matthias Barjenbruch, TU Berlin Dep. Urban Water Management

The coast line of Germany

WWTP - seasonal influences

Wastewater disposal in regions of tourism

Special qualities

- Seasonal changes
- Sudden peaks within a few days (very problematic)
- Strict effluent demands (discharge into bathing water)
- Increased amount of chemical toilets and fatty substances
- Often low alcalinity
 - Especially when using water supply out of dunes
- Design and operation of the sewage network and WTP
 - Problems with sediments, odour and corrosion in the sewers
 - Choice of wastewater treatment process
 - Case study of loading and dimensioning (e.g. dynamical simulation)

Universität Berlin berlin

Comparison of daily fluctuations

Typical variation of the daily inflow

Seaside resort (Westerland/Sylt)

Changes of the wastewater content

- Increase of the concentrations during season
 - ➡ Organic Matters (BOD₅ u. COD)
 - \Rightarrow Nitrogen (KN or NH₄-N)
 - Phosphorus
 - Suspended solids (SS)
 - Increase of fatty substances

from 10% to 40% from 20% to 100% up to 50% from 15% to 50%

- Sudden peaks (example New Years Eve):
 - Doubling of the wastewater amount
 - → 2.5-times of the organic load
 - 3-times of the load of nitrogen

Wastewater discharge systems

Special requirements

- Gravity sewer system
 - \rightarrow Dimensioning with $Q_{h,max.}$
 - Increase of deposits (higher frequency of rinsing necessary)
 - Higher amount of infiltration water
- Pressure pipe systems
 - Dimensioning with maximum flow (m³/h) in the season
 - Pumps (Twin Pump station, frequency regulated pumps, etc.)
 - Parallel pipes with different nominal size
- Odour and corrosion problems
 - Flushing with pressured air
 - Biofilter for odour treatment
 - Dosage of agents with chemical or biological effect (e.g. FeCl₃, NO₃)

Joint treatment - content of chemical toilets

• Origin

- Delivery directly to WTP
 - e.g. via camper vans, tanker or buses, cruiser ships)
- Discharge into the public sewer system (problem of control)
- Loads

Toxic substances

- About 40-times higher COD
- About 1,000-times higher nitrogen concentrations
- Important conditions for joint treatment
 - Determination of actual capacity of treatment plant
 - Least capacity of the WTP is 10,000 PE
 - Equalised dosage; regarding a 20-times dilution ratio

M. Barjenbruch, Department of Urban Water Management

- Determined by Alkaline hardness of potable water +Hydrolysis of KN
- Negative influence on nitrification
- Destruction of the floc structure leads to sludge discharge
 - Decrease of the sludge age and loss of nitrification
- ✤ Decrease of the pH-value
 - Inhibition of the nitrifyers

Solutions:

- Dosage of alkaline precipitation agents
- Denitrification to highest degree

WWTP - seasonal influences

Gdansk| 20.09.2018

Alkalinity

Denitrification to highest degree

WWTP - seasonal influences Gdansk| 20.09.2018

Methods of wastewater treatment

- Several lines
- Chemical-treatment
 - Dosage of chemicals during season
 - Precipitation and flocculation agents
 - External carbon-sources
 - Separate line during season (no nitrogen removal)
- Activated sludge system
 - "Raising" of the content of dry solids (MLSS) up to the technically possible limit
 - Hybrid system suspended biomass plus moving bed
 - Regulated raw sewage storage tank
 - External storage tanks for nitrifyers
 - Hybrid method ("two-stage" in time of peak load, one-stage during normal operation)

Combination of activated sludge and biofilter

WWTP - seasonal influences Gdansk 20.09.2018

Dimensioning the activated sludge system

Case studies of loading is necessary!

- ➡ Maximum BOD₅ load
 - High surplus sludge production, unfavourable for nitrification
- ➡ Worst BOD₅/N ratio
 - Unfavourable for denitrification
- Average load during the season
- Considering of peak loads
 - Low temperature and crucial holidays
- Tools for design and calculation
 - Stationary Methods
 - problem: short term fluctuations can not be recorded
 - Dynamic simulation, e.g. according to ASM1 or ASM 2 of IWA

Semi-technical investigations

Dimensioning using dynamic simulation calculation

- Measuring series to record
 - Peak loads
 - \Rightarrow wastewater parameter (e.g.: 2-h-samples COD; KN, NH₄, NO₃, tot.P.)
- Determination of biological parameters from the pilot plant (µ, yield, inhibition effects etc.)
- Building up a model of the existing plant

- Verification of the model
- Modelling various new designed treatment plant concepts
- Proof of the efficiency for different case studies

WWTP - seasonal influences Gdansk| 20.09.2018

IWAMA

WWTP - seasonal influences Gdansk| 20.09.2018

Results of dynamic simulation Example WWTP Westerland

Load case: "Thunder strom" Summer max.N_{anorganic} = 6 mg/l Load case Christams/New years eve max.N_{anorganic} = 7,6 mg/l

Limiting value N_{anorg.} 10 mg/l

WWTP - seasonal influences Gdansk| 20.09.2018

Technische Final design of the WTP Westerland/Sylt Universität

WWTP - seasonal influences Gdansk| 20.09.2018

M. Barjenbruch, Department of Urban Water Management berlin

Berlin

Example KA Lütjenbrode Expansion for final Denitrification

- Capacity 50.000/85.000 PE
- Inlet
 - Screen/gritchamber
- Large primary settler
 - V 1.320 m³
- 2 Tricking filter
 - 4.660 m³ BioNet
- Activated stage
 - V_{BB} 1.060 m³
- Sandfilter
 - A 120 m²; H 2 m

Combination activated sludge/fixed bed reactor

Example WTP Heiligenhafen/Baltic sea

Load: Winter: 50,000 PE Summer: 85,000 PE

Plant design:

DynaSand-Deni Example: Final denitrification in summer

Dosage of carbon source

WWTP - seasonal influences Gdansk| 20.09.2018

DynaSand-Deni Operation results: summer time

WWTP - seasonal influences Gdansk| 20.09.2018

Example WTTP Zingst

- Average Load ca. 9.200 PE; peak load: upto 14.000 PE
- Basic treatment performance
 - → very good COD, BOD_5 efficiency (> 90%)
 - N-elimination liegt mit über 70%
 - Drift of suspended solids in the season
 - High loads appear in a short period (ca. 2 month)
- Challenges
 - Unclear capacity of the WTTP
 - -No expansion of settlement allowed by water authority
 - -No future development of tourism
 - -Summer house park connection was forbidden
 - No sufficient oxygen supply in the season
 - Bulking sludge ; drift of sludge

IWVWV WWTP - seasonal influences Gdansk| 20.09.2018

M. Barjenbruch,

WTTP Zingst **Year of 1999**

Daily wastewater flow over the year

WWTP - seasonal influences Gdansk| 20.09.2018

Curve of daily flow (high season) Example WTP Zingst/Darss

WWTP - seasonal influences Gdansk| 20.09.2018

IWA

Modell of the activated sludge system

berlin

Technische Universität Berlin

Time

Results and recommendations

- The rotation disc plant should be only used as a buffer
 - Enlargement of the capacity by 1.600 PE
- Existing seasonal load can be covered by improved aeration system
- Buffer and improved aeration covers a load of 11.000 PE
- Short term load increase of 1.800 E can be provided
 - No limitation of short term touristic development
- For future loads the plants has to be rehabilitated

WTTP Zingst Today

Determination of the treatment capacity WTTP Körkwitz using dynamic simulation

Introduction

 Capacity of the WTTP Körkwitz according water law permission from 1987 was 187.000 PE

COD was limited to 200 mg/l; BOD₅ to 130 mg/l

➡ In future COD: 90 mg/l, N: 18 mg/l, P: 2 mg/l

- Changed conditions through the collapse of the main industry (fibreboard factory (IKEA))
 - No exact classification for the size of the WTTP to the objectives of treatment was possible
 - Water authorities had forbidden to build up new residential sites of hotels without a proof of capacity
 - Investigation of the actual capacity of the WTTP was necessary
 - Tool: measurement campaign and dynamic simulation

Determination of the input data for the simulation Measurement programme (July)

Objective:

Determination of the inlet and outlet parameters Sketch of the plant

Location of samples during the measure campaign

Determination of the input data for the model

Concentration graph (2-h) in the inlet of the activated tank Berlin

WWTP - seasonal influences Gdansk| 20.09.2018

Execution of the simulation

Model of the WTTP Körkwitz made with SIMBA® Universität Berlin

WWTP - seasonal influences Gdansk| 20.09.2018 M. Barjenbruch, Department of Urban Water Management berlin

Technische

Execution of the simulation

Results of the calibration (NH₄-N-out)

WWTP - seasonal influences Gdansk| 20.09.2018

Execution of the simulation

WWTP - seasonal influences

Gdansk| 20.09.2018

IWAM/

Results of the calibration (NO₃-N-out)

M. Barjenbruch,

Department of Urban Water Management

berlin

Technische Universität

Berlin

Procedure of the simulation

Case studies

- Objectives of the simulation studies:
 - Determination of the capacity limitation of the WTTP Körkwitz with different loading situations
- Increasing the inlet load step by step (5.000 PE) starting on the load of the measurement period (42.200 PE)
- Case of loading, which have been considered:
 - ➡ 42.200 PE, 15°C
 - ➡
 - ➡ 52.000 PE, 15°C
 - ➡ 41.500 PE, 10°C
 - ➡ 55.000 PE 15°C; buffering tank in the inlet

Summary

- Changes in amount and quality
 - Seasonal fluctuation
 - Sudden peaks
- Dimensioning of the treatment plants
 - Case study of loadings
 - Dimensioning of plant with dynamical simulation and additional pilot-plat investigations
 - Adapted treatment technology ("breathing" plant)
- Other specialities
 - Sewer system (sediments, max. flow, odour and corrosion)
 - Wastewater disinfection (UV- Irradiation)
 - Chemical toilets

Objectives for modelling a WTTP

- Optimized design of the plant
 - Minimising the tank volume
 - Comparison of different variations of process technologies
 - Creating and adapting the control strategy
 - Combination with existing technologies
 - Design of mechanical and electrical equipment
- Estimations of future loading scenarios
 - Connection of new industries
 - New residual areas
 - Variation of load scenarios
- Determination of the capacity of exiting WTTP
- Optimizing the operating of the plant
 - Energy optimisation
 - Effect on the operation performance
 - Integrated Simulation
 - Education of the operation personal

WWTP - seasonal influences Gdansk 20.09.2018

WWTP - seasonal influences Gdansk| 20.09.2018

IWA