Can complex models help with operation and online control? Examples of good, bad and the ugly

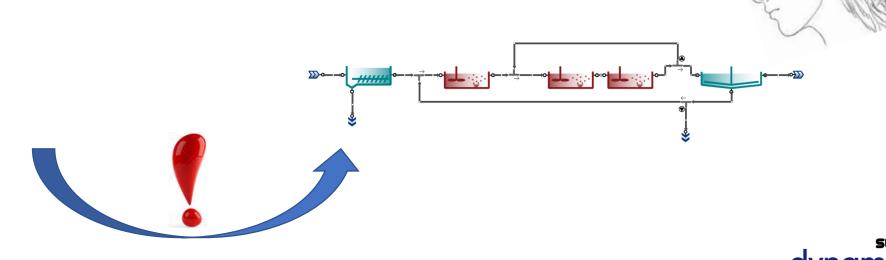
Imre Takács

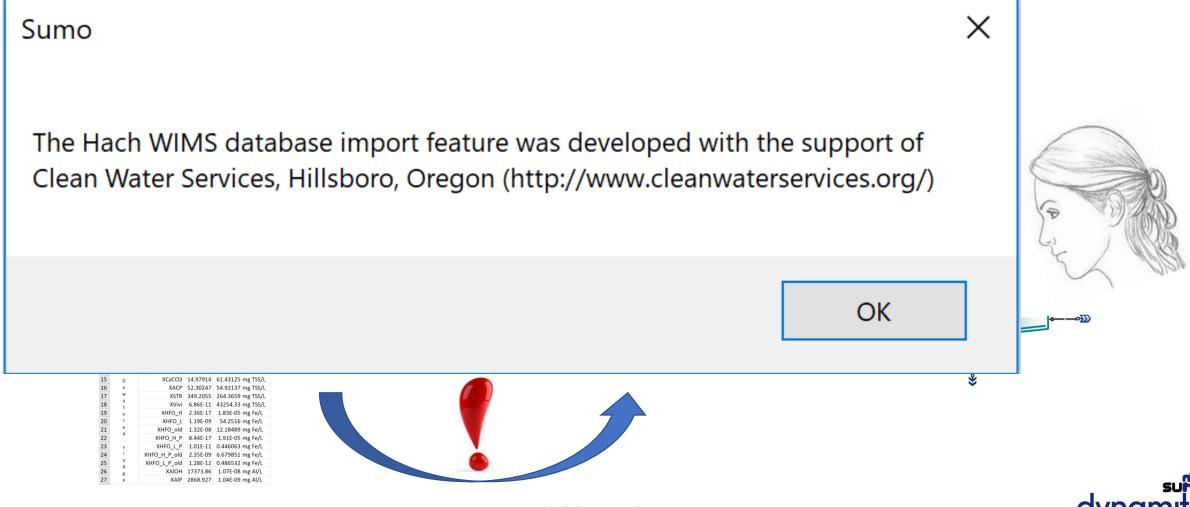
Dynamita, France

Definitions

- Model
- Control
- Online

What does "Online" mean?

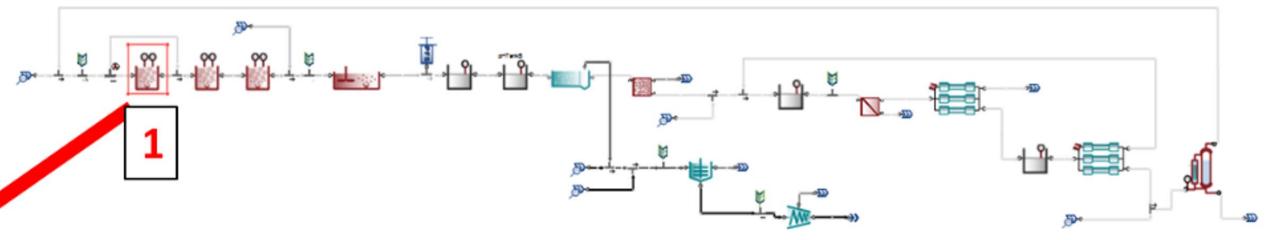

- 1. Automated data transfer from plant to model
- 2. Automated operational optimization (offline advice)
- 3. Automated controller tuning
- 4. Automated model calibration
- 5. Model-in-loop true online model based control
- 6. Artificial Intelligence (AI)


1. Automated data transfer from plant to model

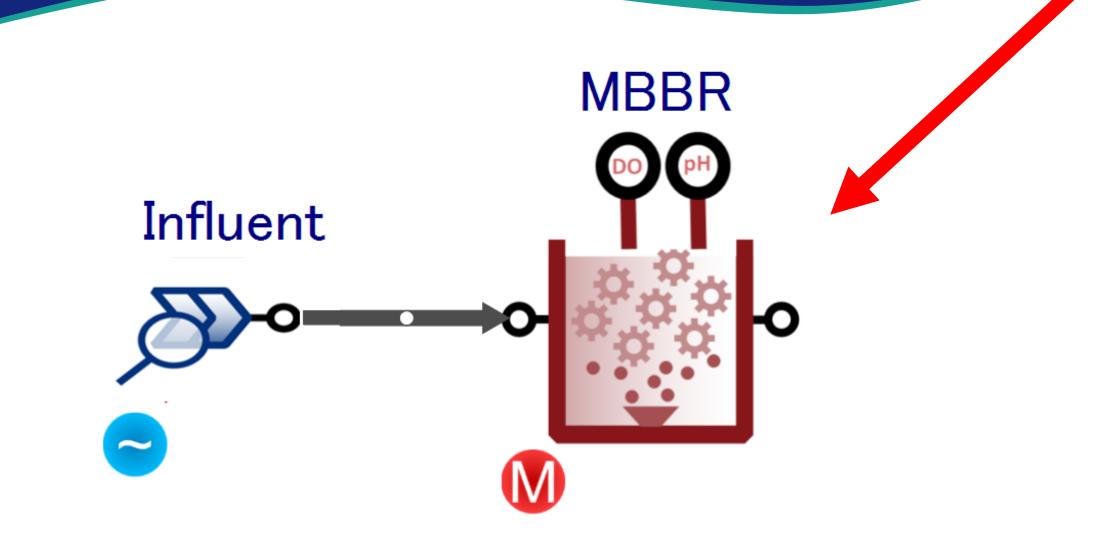
- Possible offline (manually)? Yes.
 - Copying data from Excel sheets to simulation software
- Online, automated:
 - Needs software link (driver)
 - Increased risk of bad data input

	А	В	с	D	E
1	Chem	nical dosing	Alum	Ferric	
2		E PI	0.0071	0.0124	MGD
3		W PI	0.0071	0.0124	MGD
4	E	S_WPL	0.0024	0.004	MGD
5	v	/S_WPL	0.0024	0.004	MGD
6	1	lit Odd	0.009	0.015	MGD
7		Total	0.028	0.0478	MGD
8			105.9915	180.9427	m3/d
9			15898729	18094268	g/d
10					
11	Sludge	production			
12	Dewa	tered sludge	269863	195196	lbs/d
13					
14	Pre	cipitates			
15	D	XCaCO3	14.97914	61.43125	mg TSS/L
16	e	XACP	52.30247	54.92137	mg TSS/L
17	w	XSTR	349.2055	264.3659	mg TSS/L
18	a t	XVivi	6.86E-11	43254.33	mg TSS/L
19	e	XHFO_H	2.36E-17	1.83E-05	mg Fe/L
20	r	XHFO_L	1.19E-09	54.2516	mg Fe/L
21	e d	XHFO_old	1.32E-08	12.18489	mg Fe/L
22	u	XHFO_H_P	8.44E-17	1.91E-05	mg Fe/L
23	s	XHFO_L_P	1.01E-11	0.446063	mg Fe/L
24	1	XHFO_H_P_old	2.35E-09	6.679851	mg Fe/L
25	u d	XHFO_L_P_old	1.28E-12	0.486532	mg Fe/L
26	g	XAIOH	17373.86	1.07E-08	mg Al/L
27	e	XAIP	2868.927	1.04E-09	mg Al/L

1. Automated data transfer from plant to model


2. Automated operational optimization

- Possible offline (manually)? Yes.
- Prepared scenarios or operational tables
- Choosing the best options for the objective (lowest cost)

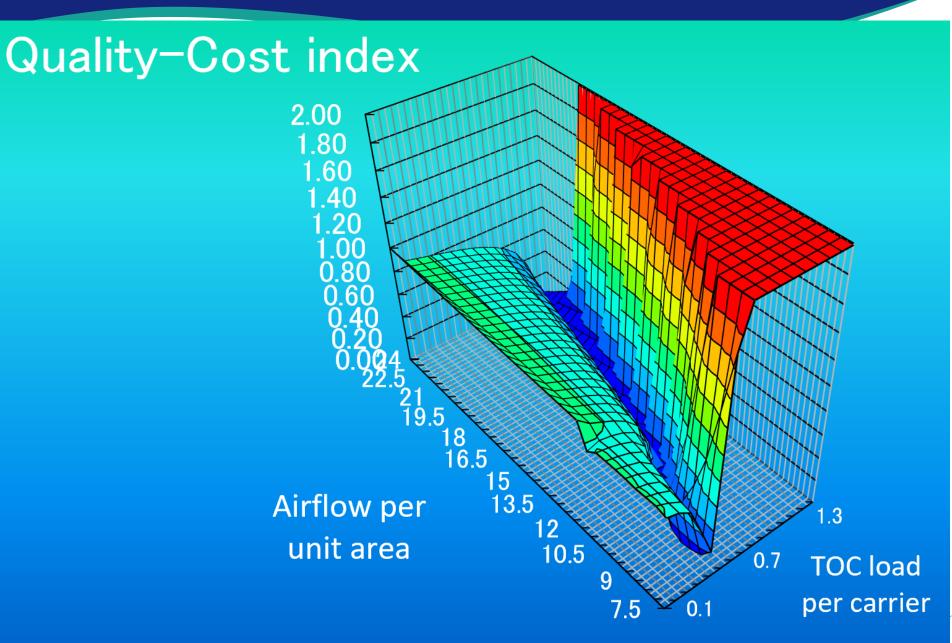

2. Automated operational optimization

• Industrial plant

2. Focus on one unit

2. Generate "surface" based on calibrated model

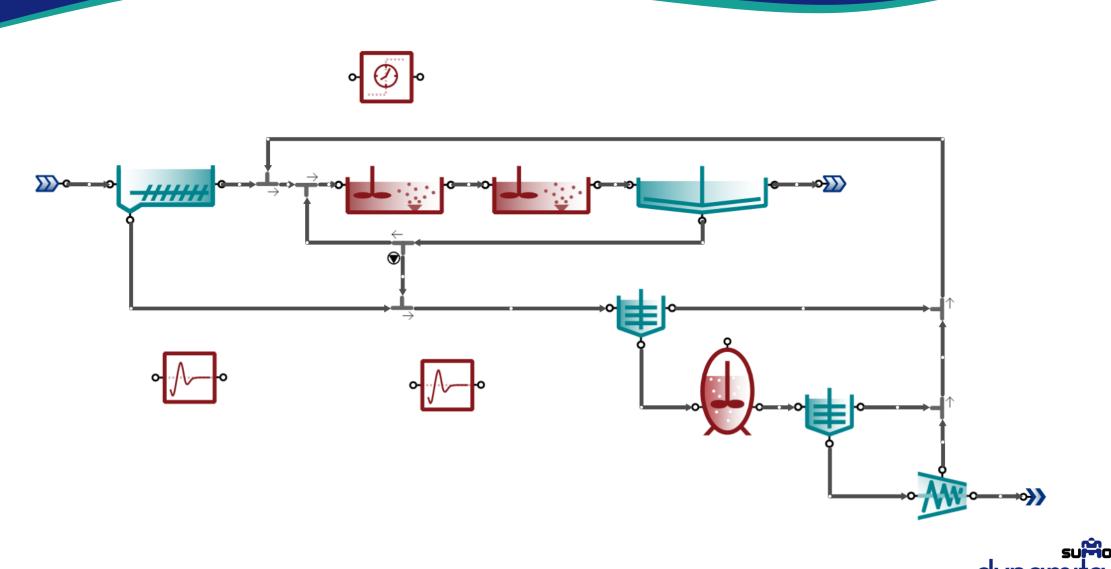
A. Influent composition changes: Recalibrate model


B. Generate operating surface Airflow, TOC load

C. Choose optimum settings daily

_	A	В	С	D	E	F	G	н	1	J.	K	L	M	N	0	Р	Q	R	S	T	U	V	W	X
M	lassPerM(T(OCLoadP	Inf_flow	DOSetPoin DT		toc	tmah	dmso	nhx	no2	no3	qair/d	kWh/d	Yen/d	qair_per_a	do			Offset	0	38	76	114	
	1.4	0.1	951.4286	0	0	6.889703	0.145386	0.000506	0.159017	0.028965	9.584266	255744	4371.692	43716.92	24	11.14545		Effluent TC	OC results [mg					
	1.4	0.1	951.4286	0	0	6.890399	0.145348	0.000504	0.158858	0.028934	9.553596	250416	4280.615	42806.15	23.5	11.12958				oc担体容和	責負荷 [kgC/	(m3 · d)]		
	1.4	0.1	951.4286	0	0	6.891164	0.145314	0.000502	0.158698	0.028904	9.523642	245088	4189.538	41895.38	23	11.1129		底面積あれ	こり曝気風	0.1	0.2	0.3	0.4	
	1.4	0.1	951.4286	0	0	6.891994	0.145284	0.000501	0.158536	0.028874	9.494423	239760	4098.462	40984.62	22.5	11.09548		[m3/(m2 •	24	6.9	7.0	7.0	7.1	
	1.4	0.1	951.4286	0	0	6.892891	0.145257	0.000499	0.158371	0.028843	9.465891	234432	4007.385	40073.85	22	11.07723			23.5	6.9	7.0	7.0	7.1	
	1.4	0.1	951.4286	0	0	6.893854	0.145233	0.000498	0.158205	0.028812	9.437995	229104	3916.308	39163.08	21.5	11.05814			23	6.9	7.0	7.0	7.1	
	1.4	0.1	951.4286	0	0	6.894886	0.145211	0.000496	0.158035	0.02878	9.410693	223776	3825.231	38252.31	21	11.03813			22.5	6.9	7.0	7.0	7.1	
	1.4	0.1	951.4286	0	0	6.895987	0.145191	0.000495	0.157863	0.028748	9.383942	218448	3734.154	37341.54	20.5	11.0171			22	6.9	7.0	7.0	7.1	
	1.4	0.1	951.4286	0	0	6.897161	0.145174	0.000494	0.157688	0.028716	9.357698	213120	3643.077	36430.77	20	10.99502			21.5	6.9	7.0	7.0	7.1	
	1.4	0.1	951.4286	0	0	6.89841	0.145158	0.000493	0.157509	0.028683	9.331922	207792	3552	35520	19.5	10.97182			21	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.899737	0.145145	0.000492	0.157329	0.02865	9.306571	202464	3460.923	34609.23	19	10.94731			20.5	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.901145	0.145132	0.000491	0.157144	0.028616	9.281615	197136	3369.846	33698.46	18.5	10.92157			20	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.902639	0.145122	0.00049	0.156957	0.028581	9.257008	191808	3278.769	32787.69	18	10.89435			19.5	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.904223	0.145112	0.000489	0.156766	0.028547	9.232714	186480	3187.692	31876.92	17.5	10.86557			19	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.905902	0.145104	0.000488	0.156572	0.028511	9.208699	181152	3096.615	30966.15	17	10.8351			18.5	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.907682	0.145097	0.000487	0.156374	0.028475	9.184925	175824	3005.538	30055.38	16.5	10.80279			18	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.90957	0.145091	0.000487	0.156172	0.028439	9.161357	170496	2914,462	29144.62	16	10,76847			17.5	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.911574	0.145086	0.000486	0.155967	0.028402	9.137954	165168	2823.385	28233.85	15.5	10.73195			17	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.9137	0.145082	0.000485	0.155756	0.028364	9.114674	159840	2732.308	27323.08	15	10.69298			16.5	6.9	7.0	7.1	7.1	
	1.4	0.1	951.4286	0	0	6.915959	0.145079	0.000485	0.155543	0.028325	9.09148	154512	2641.231	26412.31	14.5	10.65137			16	6.9	7.0	7.1	7.2	
	1.4		951.4286		0	6.918361	0.145076						2550.154			10.60681			15.5	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.145074						2459.077			10.55897			15	6.9	7.0	7.1	7.2	
	1.4		951.4286		0		0.145073						2368	23680		10.50748			14.5	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.145073						2276.923			10.45194			14	6.9	7.0	7.1	7.2	
	1.4		951.4286		0		0.145073						2185.846			10.39183			13.5	6.9	7.0	7.1	7.2	
	1.4		951.4286		-		0.157569						2094.769		11.5				13	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.150975			0.029649			2003.692			10.31271			12.5	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.150375						1912.615			10.21695			12.3	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.150455									10.11562			11.5	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.150434				7.795423		1730.462			10.01384			11.5	6.9	7.0	7.1	7.2	
	1.4		951.4286				0.150445			0.02925			1639.385			9.906835			10.5	6.9	7.0	7.1	7.2	
	1.4		951.4286			6.948821		0.000419					1548.308			9.801055			10.5	6.9	7.0	7.1	7.2	
					80			0.000419					1457.231			9.679658			9.5	6.9	7.0	7.1	7.2	
	1.4		951.4286 951.4286				0.150291				7.622054		1366.154			9.562244			9.5	6.9	7.1	7.1	7.2	
	1.4																		-					
	1.4		951.4286				0.150744 0.150393			0.027884			1275.077			9.442674			8.5	6.9 7.0	7.1	7.1	7.2	
	1.4	0.1	951.4286	0	110	6.974074	0.150393	0.000413	0.16175	0.029325	7.472094	69264	1184	11840	6.5	9.269245			7.5	7.0	7.1	7.1	7.2	
		0.01 - 10	1. C. C	DOG-ID-I- DT			touch.		nhx				Land, dat	Mar del	and a second	4			7.5					
M.				DOSetPoin DT		toc	tmah	dmso		no2	no3	qair/d		Yen/d	qair_per_a					7.0	7.1	7.1	7.2	
	1.4		1902.857				0.154623						4371.692			10.4478			6.5	7.0	7.1	7.1	7.2	
	1.4		1902.857				0.154488						4280.615			10.4142								
	1.4		1902.857				0.154542						4189.538			10.37967		Effluent NF	lx-N results (n		W-0.75 c			
	1.4		1902.857			6.966024		0.000917					4098.462			10.34385					責負荷 [kgC,			
	1.4		1902.857				0.154662			0.025597			4007.385			10.30664		底面積あた		0.1	0.2	0.3	0.4	
	1.4		1902.857				0.154725						3916.308			10.26792		[m3/(m2 *	24	0.16	0.14	0.14	0.14	
	1.4		1902.857				0.154791						3825.231			10.22757			23.5	0.16	0.14	0.14	0.14	
	1.4		1902.857			6.976058		0.000929					3734.154			10.18544			23	0.16	0.14	0.14	0.14	
	1.4		1902.857			6.978683		0.000932					3643.077		20				22.5	0.16	0.14	0.14	0.14	
	1.4		1902.857				0.154989						3552	35520		10.09527			22	0.16	0.14	0.14	0.14	
	1.4	0.2	1902.857	0	0	6.984098	0.155054	0.000938	0.139967	0.025544			3460.923			10.04691			21.5	0.16	0.14	0.14	0.14	
	1.4	0.2	1902.857	0	0	6.986896	0.155116	0.000941	0.13989	0.025533	8.2882	197136	3369.846	33698.46	18.5	9.996096			21	0.16	0.14	0.14	0.14	
	1.4	0.2	1902.857	0	0	6.989761	0.155177	0.000943	0.13981	0.025523	8.288186	191808	3278.769	32787.69	18	9.94263			20.5	0.16	0.14	0.14	0.14	

2. Surface model example

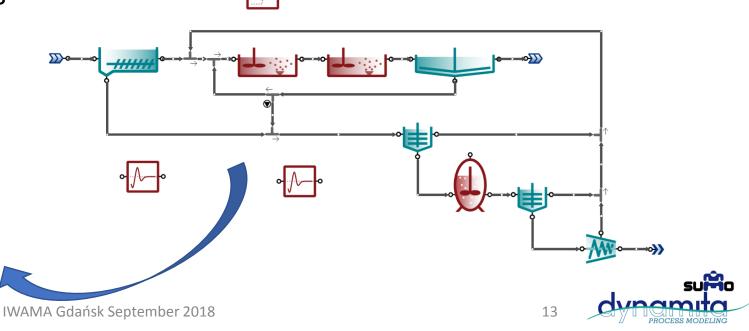


3. Automated controller tuning

- Possible offline (manually)? Yes.
- Calibrated model and same controller code as in PLCs
- Tuning controller gain etc. for different periods, operational conditions

3. Automated controller tuning

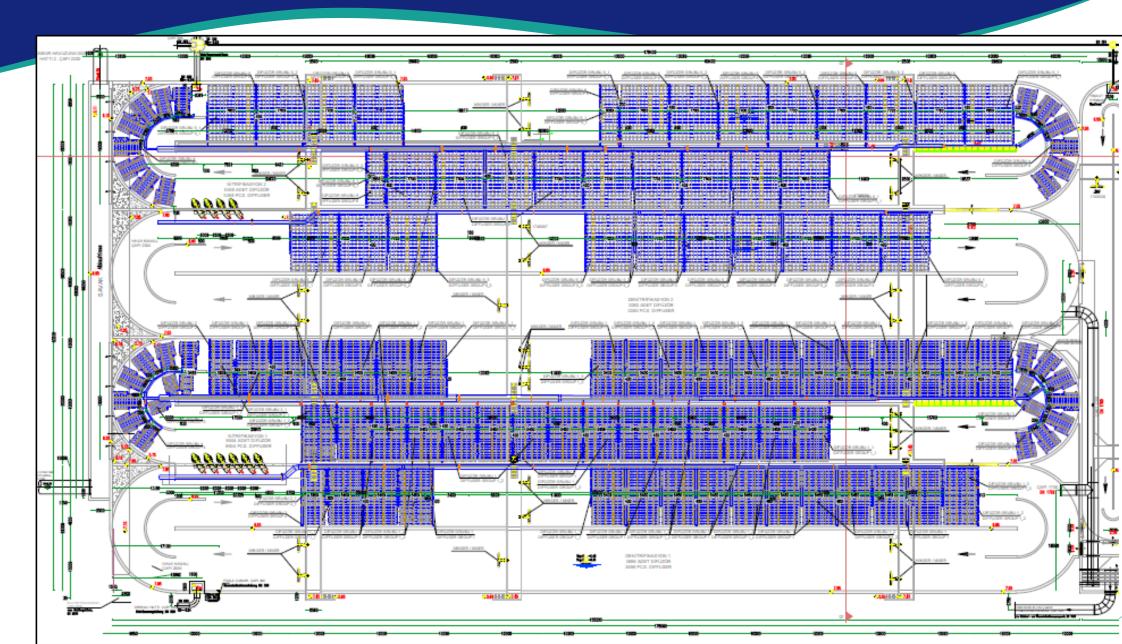
IWAMA Gdańsk September 2018

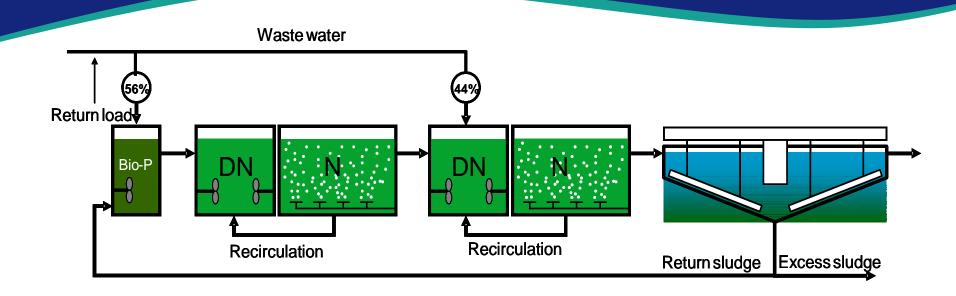

12

3. Automated controller tuning

• Online, it needs:

- Automated data transfer (1)
- Calibrated model (manual or item 4)
- Autotuning algorithms (since 1940s e.g. Ziegler-Nichols)
- Transfer of gains etc. to PLCs




4. Automated model calibration

- Possible offline (manually)? Yes.
- Automatic data transfer
 - Continuous, daily, weekly, etc..
- Selected sets of model parameters changed to minimize predefined objective function, i.e.
 - change (uncertain) waste rate and (unmeasured) influent RBCOD
 - match MLSS and effluent TN
 - real cases are much more complex

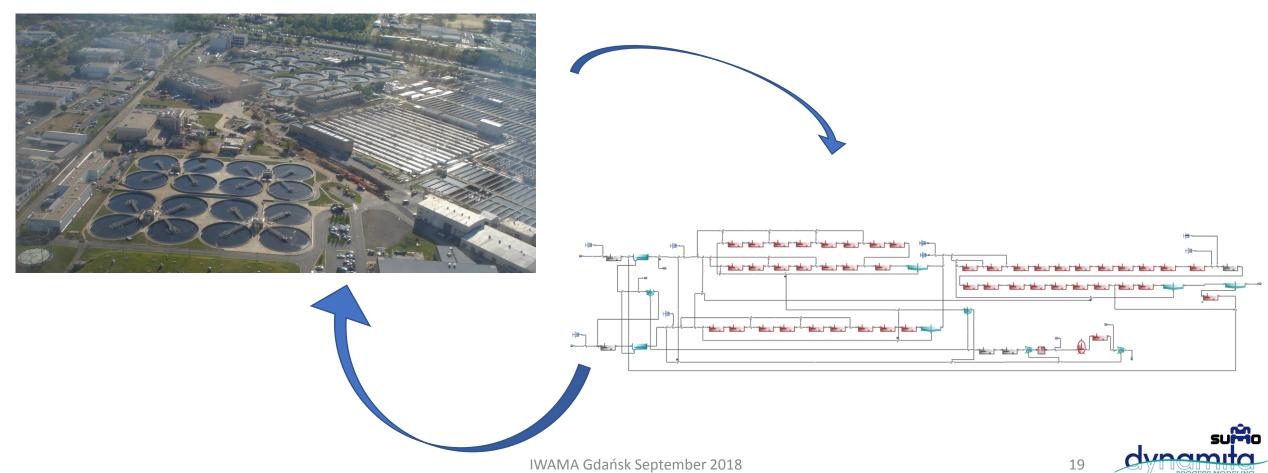
4. Automated model calibration – complex plant

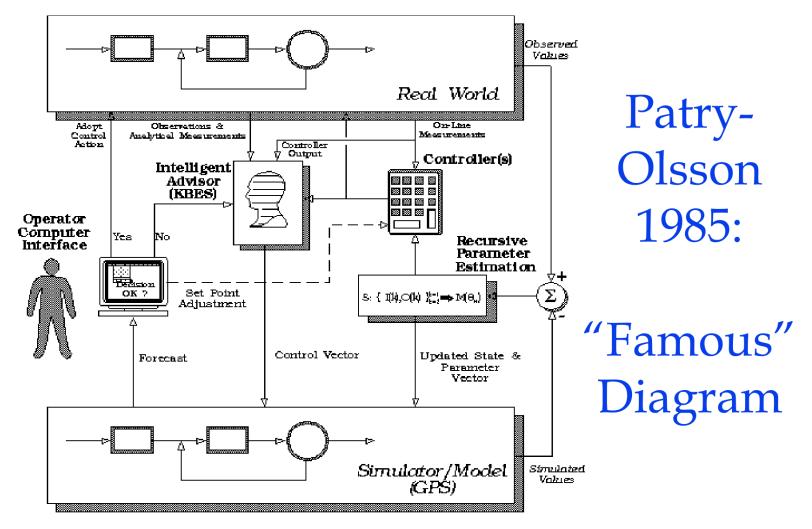
4. Automated model calibration – complex plant

Mixture of Processes at the same time:

- Step Feed
- A²O
- Simultaneous Nite/Denite

4. Model implementation


4. Automated model calibration – complex plant

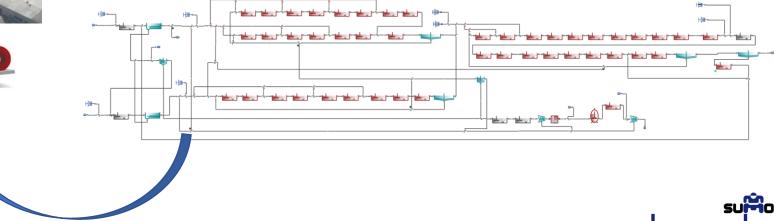

- Calibration control objectives
 - 1. Dissolved oxygen control
 - 2. Nitrate recycle control
 - 3. Cascade ammonia DO control
- Impact of dynamic influent
- Location of probes

Not trivial due to interactions and the need for clean data

• Possible offline (manually)? N/A.

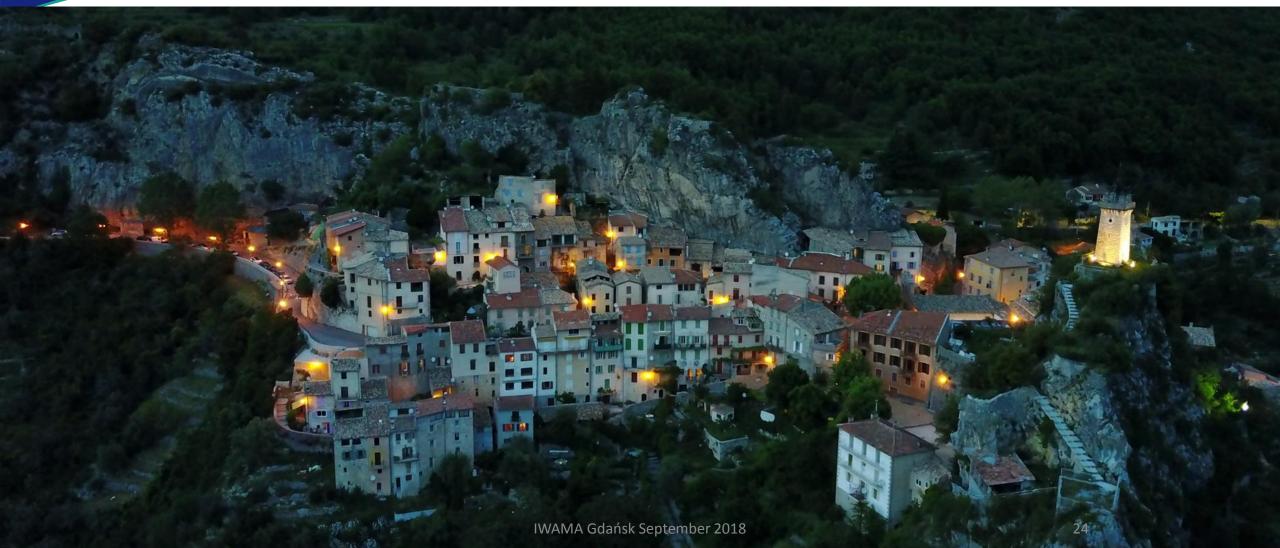
IWAMA Gdańsk September 2018

20


- Possible? Not yet today
- Not all inputs can be measured online
- Data reconciliation (fully automated) needed
- Risk of failure
- Large effort
- Engineer/operator brain is still needed
- Keep it as simple as possible (but not simpler)

22

- 1. Automated data transfer from plant to model
- 2. Automated operational optimization (offline advice)
- 3. Automated controller tuning
- 4. Automated model calibration
- 5. Model-in-loop true online model based control
- 6. Artificial Intelligence (AI)



Questions?

