

Increase in Biogas Utilization

Jörn FranckGertrud EdensManaging DirectorProject Engineer

IWAMA – 2nd International Capacity Development, Workshop Energy Production in WWTP

14. February 2017, Boltenhagen

Content

Introduction

- How to produce Biogas Case Study Food Waste
 - **Energy Utilization from Biogas**
 - Internal Combustion Engines
 - Gas Turbines
 - Fuel Cells
 - Organic-Rankine-Cycle
- Conclusions

Who we are ...

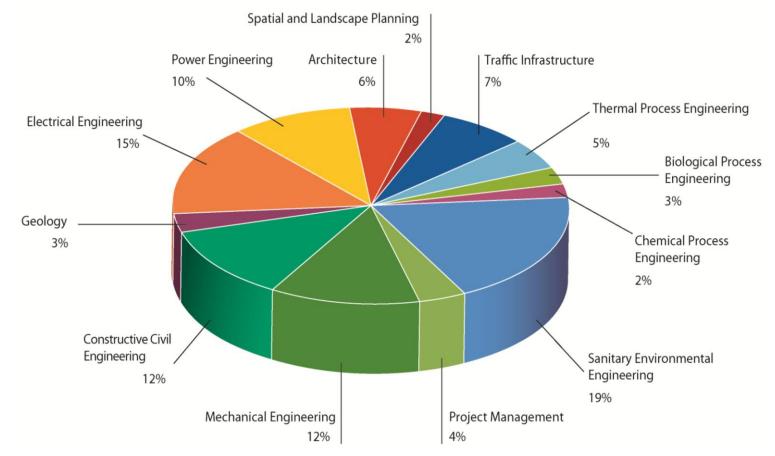
Privately owned Engineering Consultancy Company

- Founded 1972
- Independent
- For public and private / industry customers
- DIN ISO 9001:2015 Certified
- Consultancy
- Concepts and Studies
- Design and Planning
- Construction Supervision
- Project Management
- Expert Views and Reports

Our Fields of Activity

- Water
- Waste Water
- Sludge
- Waste
- Energy
- **Biogas**
 - Electrical

- Control Technology
- Industry Plants
- Civil Engineering
 - Airport Planning
- Hazardous Waste
- Geo-technic



Our Assets

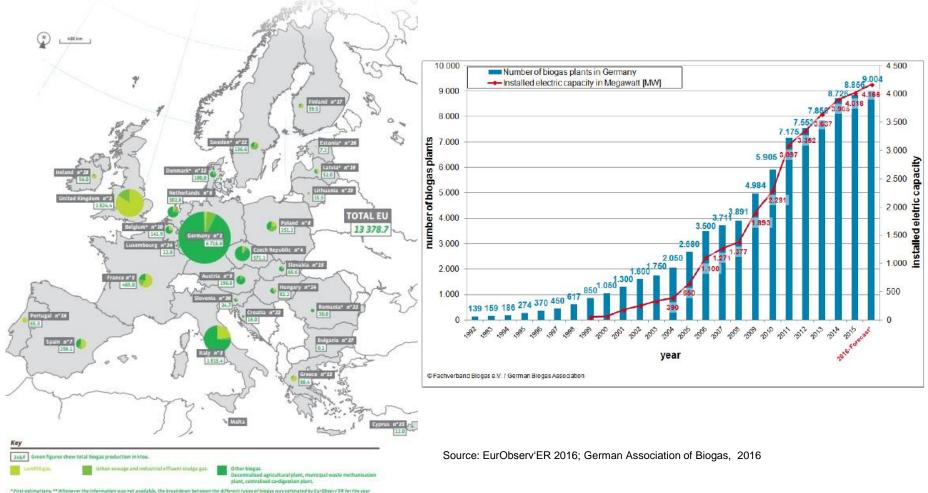
180 Employers with some 80 % of Engineers

Content

Introduction

How to produce Biogas – Case Study Food Waste

Energy Utilization


- Internal Combustion Engines
- Gas Turbines
- Fuel Cells
- Organic-Rankine-Cycle

Conclusions

Biogas Plants EU and Germany

Joily on the basis of the breakdown observed in 2023. Source: EurObserv'ER 2024.

Typical Organic Waste Fractions

Waste Wood

Grass Silage

Manure

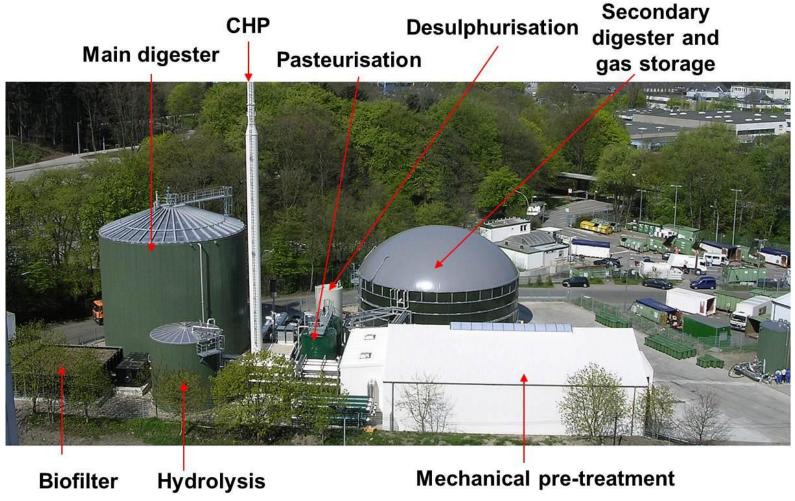
Municipal Organic Waste

Food Waste

Packed Food Waste

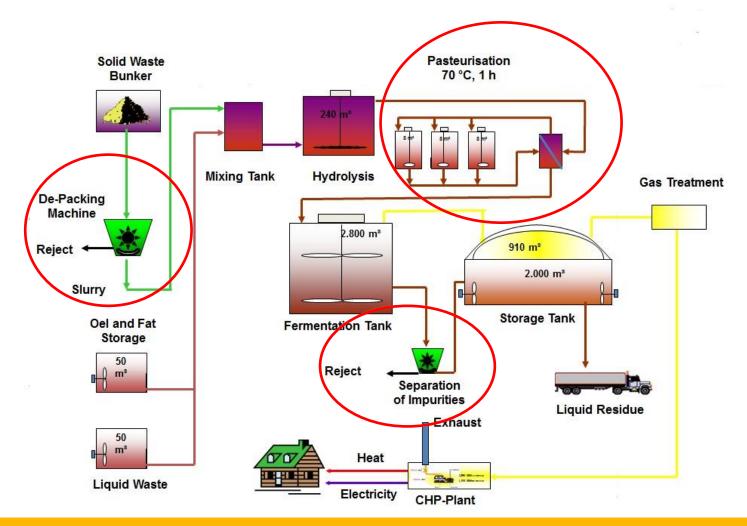
General Classification of Biomass

	Incineration	Composting	Dry Ferment., discontinuous	Dry Ferment., continuous	Wet Fermentat.
Typical Material	Wood waste	Gardening, park waste	Org. household waste	Org. household waste	Food waste
Dry Matter Feedstock (%)	100 – 60	70 - 30	40 - 30	30 - 20	15 - 10
Dry Matter Residue (%)	-	> 80	30 - 20	20 - 10	10 - 3



Typical Biomass Feedstock Specifications

		Gras Silage	Cow Manure	Municipal Organic Waste	Kitchen Waste / Leftovers
Dry Matter	%	25-50	8-11	40-75	9-37
Organic Matter	% DM	70-95	75-82	50-70	80-98
Biogas Yield	m³∕t	170-200	20-30	80-120	50-480
Biogas Yield	m³⁄t Org	550-620	200-500	150-600	200-500
Methane Content	%	54-55	60	58-65	45-61
Nitrogen Content	% DM	3.5-6.9	2.6-6.7	0.5-2.7	0.6-5
Ammonia Content	% DM	6.9-19.8	1-4	0.05-0.2	0.01-1.1
Phosphor Content	% DM	0.4-0.8	0.5-3.3	0.2-0.8	0.3-1.5



Wet Fermentation of Food Waste – Case

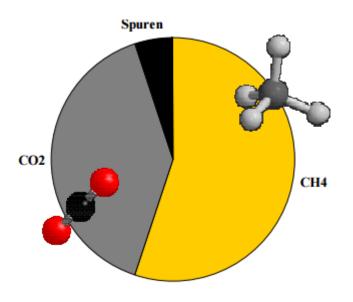
Wet fermentation Process, Simplified Flow Chart – Food Waste

Typical Biogas Composition

Methane

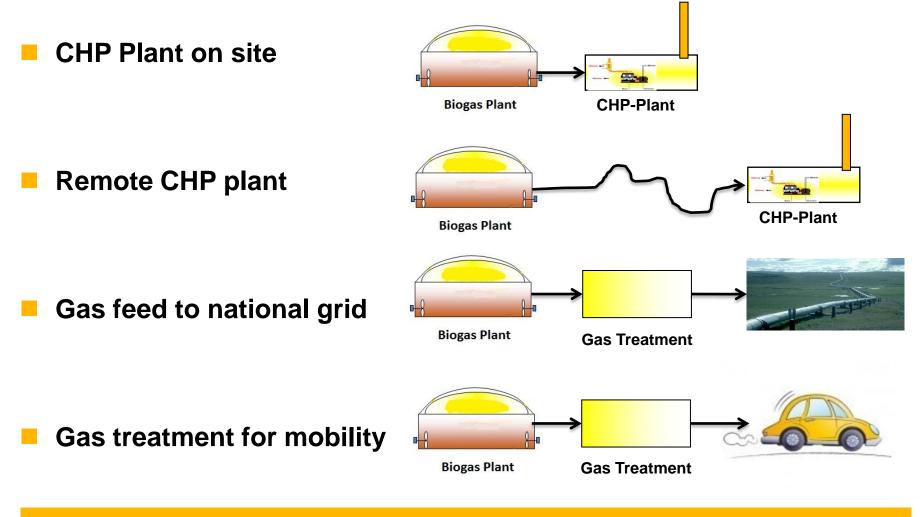
- 45–65 Vol.-%
- Depending on feedstock

Carbon Dioxide


• 30 – 50 Vol.-%

Hydrogen Sulphate

- Up to 2 Vol.-%
- Toxic
 - 10 ppm = 14 mg/m³ MWPC
 - lethal > 500 ppm
- > 4.3 Vol.-% Explosive < 45.5 Vol.-%


Others

• e.g. Ammonia

Biogas Utilization, Options

Biogas Utilization, Specifications

	CHP Plant on-site	Remote CHP plant	Gas delivery to public gas grid	Gas for mobility
Pro´s/Con´s	Reliable	Heat off-	Gas off-site/high	Petrol
	technique/require	site/high	cost for	substitution/hig
	s heat demand on	investment for	investment and	h cost for
	site	gas line	gas treatment	investment
Gas	Only removal of	Only removal of	Removal of H2O,	Removal of H2O,
requirements	H2O and H2S	H2O and H2S	H2S and CO2	H2S and CO2
Gas	Cooling and	Cooling and	Pressure swing process, scrubbing	Pressure swing
Treatment	biological	biological		process,
technol.	desulphurisation	desulphurisation		scrubbing
Gas pressure	30 – 80 mbar	150 – 300 mbar	20 – 75 bar	200 bar

Content

Introduction

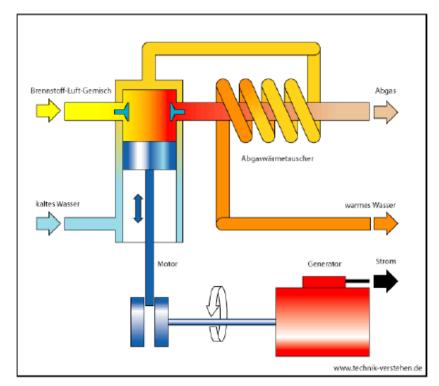
How to produce Biogas – Case Study Food Waste

Energy Utilization from Biogas

- Internal Combustion Engine
- Gas Turbine
- Fuel Cell
- Organic-Rankine-Cycle

Conclusions

Internal Combustion Engine – Principle


- Spark Ignition Engine (extraneous ignition)
 - Biogas
 - Natural Gas
 - Gasification Process
 - **Diesel engine (self-ignition)**
 - Diesel

Energy Efficiency

- 30 40 % electrical
- 40 50 % thermal
- 10 % losses

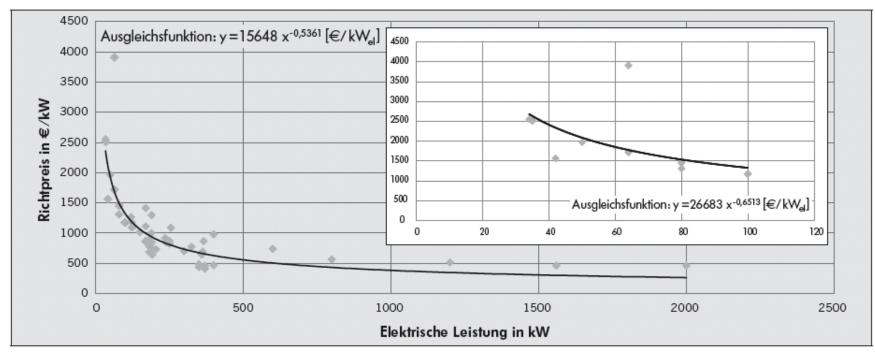
Priority 1: Electricity Generation

Priority 2: Heat Generation

Source: Technik-verstehen.de

Internal Combustion Engine – Requirements

Fuel Requirements


- Max. Biogas Temperature: 40 °C
- Gas Composition: 45 % 70 % Methane, Rest CO₂
- Lower Calorific Value: 4,3 7 kWh/m_N³
- Relative Moisture: max. 80 % Vol.
- Hydrogen Sulphide: < 700 (@ 100 % Methane) or < 280 ppm (@ 50 % Methane)
- Ammonia: < 50 mg/m_N³ (@100 % Methane)
- Halogen (F, Cl): < 100 mg/m_N³ (100 % Methane)
- Silicon: $< 5 \text{ mg/m}_N^3$ to 10 mg/m $_N^3$

Internal Combustion Engine – Economy

Power Range Biogas: 1,3 – 2.000 kW_{el}

Investment Cost

Source: BHKW-Kennzahlen 2011

Internal Combustion Engine – Pros and Cons

Advantage	Disadvantage
Electrical Efficiency up to 40 % and above	High Methane Concentration required (> 45 %)
Small Energy Losses (approx. 2 % - 5 % due to Emergency Cooling)	Heat disposal required if no Heat utilization available
Insensitive to Variations in Gas Pressure and Temperature	Sensitive to Hydrogen Sulphide in the Gas Phase (Oil Deterioration)
Waste Heat Recovery (Cooling Water and Recovery Boiler)	Continuous operation preferred (4 – 6 h/day)
Life Span > 100.000 Hours of Operation	Intermitting operation reduces Economy
Good part-load Behaviour (50 – 100%)	Comparatively high Operating Cost (Service, Oil, Spare Parts, etc.)
Comparatively low Investment Cost	Gaseous Emissions

Content

Introduction

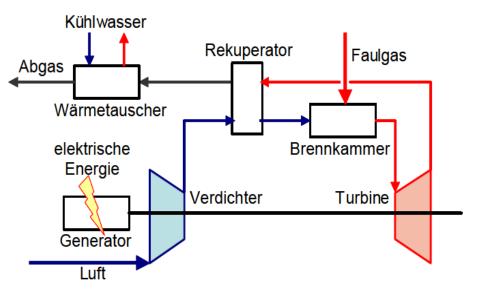
How to produce Biogas – Case Study Food Waste

Energy Utilization from Biogas

- Internal Combustion Engine
- Gas Turbine
- Fuel Cell
- Organic-Rankine-Cycle

Conclusions

Gas Turbine – Principle


Turbocharger technology

- Thermal conversion in separate
 Combustion Chamber
- Exhaust Gas drives Gas Turbine and Compressor (same shaft)
- Turbine and Generator on one Shaft (no gearbox)
- Speed 70.000 100.000 U/min
- Max. Engine Power rating for Micro Gas Turbine: 300 kW_{el}

Energy Efficiency

- 15 25 % electrical
- 60 70 % thermal
- 5 15 % Loss (Gas Compression)

- Priority 1: Heat Generation
- Priority 2: Electricity Generation

Source: W. Frey, Leobendaorf

Gas Turbine – Requirements

Fuel Requirements

- Max. Biogas Temperature: 50 °C
- Lower Calorific Value: 3,8 8,3 kWh/m_N³
- Gas Composition: 35 % 75 % Methane, CO₂ max. 50 Vol%
- Moisture: max. 3 Vol %
- Particulates: < 10 μm, 20 ppm
- Hydrogen Sulphide: < 200 ppm (turbine is insensitive \rightarrow Exhaust gas quality)
- Silicon: < 5 ppb

Gas Turbine – Economy

Power Range: 30 – 75 (max. 300) kW_{el} Micro Gas Turbine

Investment Cost

el. Power	Unit	specific Investment costs
30 – 75 kW _{el}	€/kW _{el}	1.300 - 4.000

Gas Turbine – Pros and Cons

Advantage	Disadvantage
Insensitive to Variations in Gas Quality	High specific Investment cost
Insensitive to low Methane concentration	Low electrical Efficiency
Heat Recovery	External Energy for start-up required
Low Abrasion	Emergency power supply only with additional device
Waste-gas heat exchanger with by-pass (using no emergency cooling)	Life span: 40.000 hours of operation
Constant Efficiency for large load range	
Part-load operation (50 - 100 %)	

Content

Introduction

How to produce Biogas – Case Study Food Waste

Energy Utilization from Biogas

- Internal Combustion Engine
- Gas Turbine
- Fuel Cell
- Organic-Rankine-Cycle
- Conclusions

Fuel Cell – Principle

Fuel Cells for Biogas

	Operating Temperature	Electrolyte	Fuel	Oxidant
MCFC (Molten Carbonate Fuel Cell)	650 °C	Lithium and Potassium Carbonate	Natural Gas, Coal and Biogas	Air
PEMFC (Proton Exchange Membrane Fuel Cell)	80 °C	Solid Polymer	Hydrogen, Methanol	Oxygen, Air

Fuel Cell – Principle

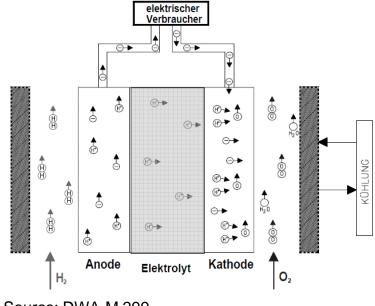
Principle of reverse electrolysis

 controlled electrochemical reaction, referred to:

Anodic reaction:

 $H_2 \rightarrow 2 H^+ + 2 e^-$

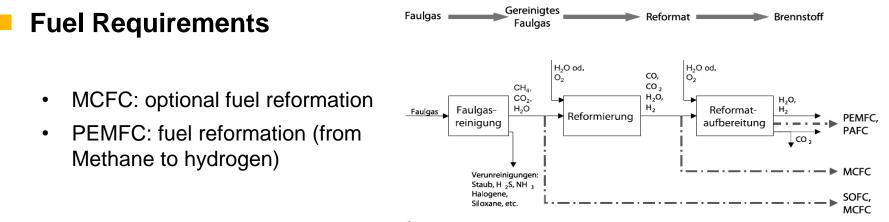
Cathodic reaction:


 $\frac{1}{2}O_2 + 2 H^+ + 2 e^- \rightarrow H_2O$

Energy Efficiency

MCFC:

- 50 55 % electrical
- 35 40 % thermal PEMFC:
- 38 42 % electrical


- Priority 1: Electricity Generation
- Priority 2: Heat Generation (MCFC)

Source: DWA-M 299

Fuel Cell – Requirements

Source: DWA-M 299

	Unit	PEMFC	MCFC
Methane	%	< 90	rd. 65
Lower heating value	kWh/m _N ³	> 9	6,5
Carbon dioxide	%	< 3	No requirements
Hydrogen sulphide	ppm	< 6	< 10
Halogen	ppm	< 1	< 0,1
Silicon	ppm	< 1,2 mg/m ³	< 1,2 mg/m ³

Fuel Cell – Economy

Power Range: MCFC: 100 - 300 kW_{el} PEMFC: up to several 100 kW_{el}

Investment Cost

el. Power	Unit	specific Investment costs
250 kW _{el}	€/kW _{el}	7.000

Fuel Cell – Pros and Cons

Advantage	Disadvantage
High electrical Efficiency (no limit by Carnot-Cycle)	Complex Biogas conditioning
Good Part Load Behaviour	Poor Reference Situation (mainly Pilot Plants)
Low / no gaseous Emissions	High Safety Requirements (Hydrogen)
	High Investment Cost
	Life span: 30.000 hours of operation

Content

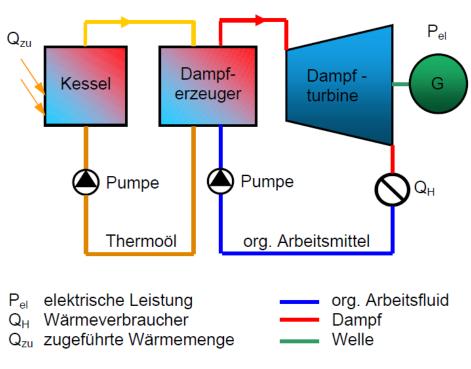
Introduction

How to produce Biogas – Case Study Food Waste

Energy Utilization from Biogas

- Internal Combustion Engine
- Gas Turbine
- Fuel Cell
- Organic-Rankine-Cycle
- Conclusions

Organic-Rankine-Cycle – Principle


Principle of steam turbine but without steam (water)

- Low Level Energy Recovery (> 150 °C) e. g. from Combustion Processes
- Evaporation of an organic Working Fluid
- Expansion Cycle with turbine or reciprocating engine

Energy Efficiency

- 7 19 % electrical
- 76 88 % thermal
- 5 % losses

Priority 1: Electricity Generation

Organic-Rankine-Cycle – Requirements

Requirement Biogas

- Temperature: > 150 °C
- Composition (Prevention of Corrosion inside Heat Exchanger)

Requirement Heat Transfer Medium

- Choice of Heat Transfer Medium depends on Temperature level (Attention to thermal degradation)
- Heat Transfer Medium Oil / hot Water (depends on ORC type and energy-power class)

Working Fluid

• Iso-pentane, Iso-Octane, Toluol or Silicone Oil

Organic-Rankine-Cycle – Economy

Power Range: 3,5 – 5.000 kW_{el}

Investment Cost

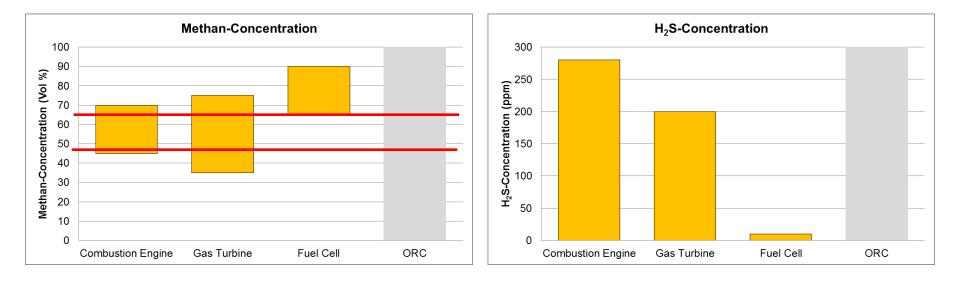
el. Power	Unit	specific Investment costs
35 – 70 kW _{el}	€/kW _{el}	3.400 - 6.900

Organic-Rankine-Cycle – Pros and Cons

Advantage	Disadvantage
Waste Heat Recovery for low Temperature Processes	Low electrical Efficiency
Heat of Condensation for District Heating	Organic working fluid (Water Pollution)
120.000 Hours of Operation	Thermal stability of Working Fluid (Oil) is limited at high temperature
Proven Reference Situation	
No high Pressure Boiler (Low Requirements on Operational Staff)	

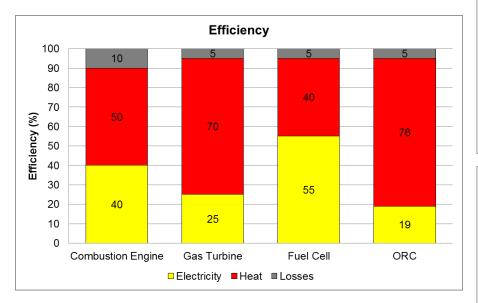
Content

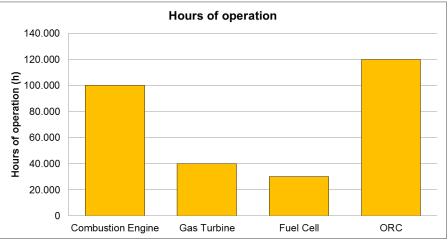
Introduction

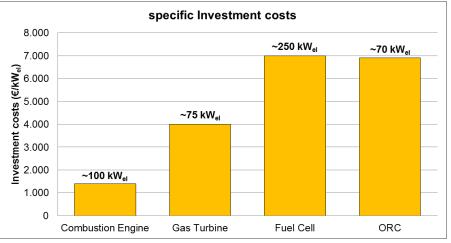

- How to produce Biogas Case Study Food Waste
 - **Energy Utilization from Biogas**
 - Internal Combustion Engine
 - Gas Turbine
 - Fuel Cell
 - Organic-Rankine-Cycle

Conclusions

Conclusions – Fuel Requirements


Fuel Requirements:





Conclusions – Energy Utilization

Energy Utilization:

Conclusions

Electricity-oriented Operation:

- Internal Combustion Engine
- Fuel Cell

Applied for maximizing Electricity Production

Heat-oriented Operation:

• Gas / Micro Gas Turbine

Improvement in Efficiency (add on system)

• ORC

Applied for Waste Heat Utilization at high temperature levels, e.g. Drying Processes

Applied for Waste Heat
 Recovery at low temperature levels to increase overall Electricity Production