Energy efficiency

WWTP Berlin

Carsten Lüdicke, Berliner Wasser Betriebe

IWAMA 3rd International Capacity Development Workshop Szczecin, Poland

Szczecin, 7 June 2017
Electricity production

From digester gas, steam and wind 90 GWh of electricity were produced in 2016.
Energy efficiency – WWTP Berlin

WWTP Waßmannsdorf - bivalent zone

Process optimisation

source: Berliner Wasserbetriebe
Energy efficiency – WWTP Berlin

WWTP Waßmannsdorf - bivalent zone

Process optimisation

- anaerobic
- anoxic + bivalent 50 %
- aerobic 50 %
- degassing

Inflow

| board | mixers |

Oxygen, NOx, NH4

II

III

NOx, NH4

P

O2, T

O2, T

NOx, NH4

Q

RS

Reci
Energy efficiency – WWTP Berlin

WWTP Waßmannsdorf - bivalent zone

Effect on energy demand

- Ø 3,000 m³/h

≈ - 500,000 kWh/year/line
WWTP Waßmannsdorf - bivalent zone
Mixing
Energy efficiency – WWTP Berlin

WWTP Waßmannsdorf - bivalent zone

TSS profile measurement
(SVI ≈ 60 ml/g)

short term aeration with
30 minutes breaks
w/o sedimentation

SVI tested:
40 - 120 ml/g

Time TSS [mg/l]

- **Depth [cm]**
- **Time**
 - 12:05
 - 12:12
 - 12:20
 - 12:29

Aeration break 12:01 – 12:30
Energy efficiency – WWTP Berlin

WWTP Waßmannsdorf - bivalent zone

Mixing – effect on energy demand

$V_{\text{biv}} = 2,285 \text{ m}^3$

3 mixers a 3 kW = 9 kW
3.9 W/m³

Ø 60 - 80 m³/h air volume
21 Wh/m³ → 1.3 – 1.7 kW
0.55 – 0.74 W/m³

≈ - 65,000 kWh/year/line
Energy efficiency – WWTP Berlin

Oxygen probe
Contamination
Oxygen probe
Effects of dirty O$_2$ probes – less aeration

- measuring of too high O$_2$ concentrations
- feedback control results in minimum aeration
 → low aeration - danger of high ammonia

process probe (red) / real concentration (blue)
Oxygen probe
Effects of dirty O$_2$ probes – excess aeration

- measuring of too low O$_2$ concentrations
 → excess aeration - higher energy demand
Oxygen probe
Effects of dirty O_2 probes – excess aeration

O_2 measurement has a significant impact on the energy demand!

Worst case:
additional costs of 1,000 € / d / line due to dirty O_2 probes

Improvement of cleaning strategies for all WWTP
Optimisation of aeration

Fields

Blower
- model
- operating range
- efficiency
- adjustment

Air distribution system
- number of adjusted zones
- O_2-concentration
- control devices
- measurement accuracy

Air diffusion system
- material
- shape
- efficiency
- lifetime
Optimisation of aeration Evaluation

1. Comparability
 Relating to ODCND

2. Operation Evaluation
 Operating figure eOD
 (including all influencing factors)

3. Possible reasons for change of eOD
 a) eBlower,p
 Efficiency of blowers
 b) O2-concentration
 (TSS, recirculation,...)
 Efficiency of operation
 c) sSOTR
 Efficiency of aerators

Continious development and automation of operating figures calculation

► Evaluation of aeration efficiency with focus on indicating need for action
Optimisation of aeration
Database

Design
Equipment
Operating data
(year / month average)
Operating figures
Optimisation of aeration
Evaluation of pressure loss

pressure loss [mbar]
Optimisation of aeration
Aerator cleaning

Brandol 60 with hydrochloric acid (5%)
Optimisation of aeration

Cleaning Results

sSOTR (specific standard oxygen transfer rate $[gO_2/m^3/m_{\text{submersion depth}}]$)

Energy efficiency – WWTP Berlin
Carsten Lüdicke
Process engineer
Berlin Wasser Betriebe

Phone: +49.30.8644.6008
e-mail: carsten.luedicke@bwb.de
www.bwb.de