Efficient aeration – oxygen transfer

Prof. Dr.-Ing. habil. Martin Wagner Justus Behnisch, M.Sc. Anja Ganzauge, M.Sc.

Structure

Introduction

Oxygen transfer in wastewater

- SOTR
- General requirement
- a-value
- Dimensioning an energy efficient aeration system
- New design approach and the EXPOVAL project
- Conclusions
- References

Energy demand for aeration/mixing

 WWTP consume large amounts of energy

Consumer:

- Aeration
- Mixing
- Pumps

POWER REQUIREMENT WWTP

[DWA(2008)]

Objectives of Aeration

• provide oxygen for carbon and nitrogen oxidation

- maintaining minimum oxygen concentration:
 - without nitrification
 - nitrification

> 0 – 0.5 mg/l

1.5 - 2.0 mg/l

Objectives of Aeration

Mixing of aeration tanks

- avoid settling of activated sludge
- provide nutrient transfer (BOD, N, P, O₂) to bacteria (-flocs)
- provide transport of metabolism products from bacteria (-flocs)
- provide stripping of gases
 - $CO_2 \rightarrow$ from BOD degradation (pH-value)
 - $N_2 \rightarrow$ denitrification

07.06.2017 | Institut IWAR | Prof. Dr.-Ing. habil. Martin Wagner | 6

Aeration systems

1. Mechanical/Surface aeration

- Water drops in the air
- O₂ Diffusion from air into water

2. Fine bubble Aeration

- Gas-bubbles in the water
- O₂ Diffusion from gas bubble into water

tion

Standard Oxygen Transfer Rate SOTR [kg O₂/h]

- "SOTR is the mass [kg] of oxygen transferred by an aeration installation in one hour in a tank of certain size filled with clean water at DO of C = 0 mg/L, a water temperature of 20 °C and normal atmospheric pressure (1,013 mbar)." (ATV-M209E)
- Oxygen Transfer at Standard Conditions
 - atmospheric normal air pressure (1,013 mbar -> C_s)
 - TW = 20 °C -> c_s und k_La
 - oxygen concentration C = 0 mg/l

 calculation of Standard Clean Water Oxygen Transfer Rate (SOTR) according to the DWA-M 229-1 (2013):

$$SOTR = \frac{f_d \cdot \beta \cdot C_{S,20}}{\alpha \cdot \left(f_d \cdot \beta \cdot C_{S,T} \cdot \frac{p_{atm}}{1,013} - C_X\right) \cdot \theta^{(T_W - 20)}} \cdot OV_h$$

SOTR: Standard Oxygen Transfer Rate $[kgO_2/h]$ OV_h: Oxygen demand (OUR) $[kgO_2/h]$ f_d: depth factor [-] O_2 saturation concentration [mg/l]C_S: β: salt factor [-] f_S: salt factor for a-value [-] a: alpha-value [-]

source: www.stol.it www.merkur.de www.shutterstock.com

Influence of salt:

Salt reduce O₂ saturation concentration:

$$c_{S,wastewater} = \beta \cdot c_S$$

β: salt factor = 0,95 to 1,0 = 1 - 0,01 · TDS [-]

TDS: Total Dissolved Solids [g/L]

e.g. North Sea: $\beta \approx 0.8$

Other effects by salt, where investigated in the **EXPOVAL** Project (later in this presentation)

Influence of water temperature:

Influence of pressure:

$$C_{S} = C_{S,p_{0}} \cdot \left(1 + \frac{h_{D}}{2 \cdot 10,35}\right) = C_{S,p_{0}} \cdot \left(1 + \frac{h_{D}}{20,7}\right)$$

Depth factor f_d:

h_d: depth of submergence [m]

h_{BB}: depth of the tank [m]

depth factor f_d

Atmospheric pressure:

city	height	Inhabitants
	about NN	Mio.
Lhasa	3.650	0,5
La Paz	3.600	0,9
Quito	2.850	1,4
Bogota	2.640	6,8
Mexico-City	2.310	8,8
Sana'a	2.250	2,5
Johannesburg	1.753	3,9
Nairobi	1.650	2,7
Ulaanbaatar	1.350	1,0
Teheran	1.191	8,8

source: www.stol.it www.merkur.de www.shutterstock.com

The a-value

IWAF

various substances in wastewater (i.e. surfactants, MLSS):
 k_La at operation conditions is usually lower than in clean water.

 $k_L a_{service \ conditions} = a \cdot k_L a_{clean \ water}$

with

$k_L a_{service \ conditions}$	calculated k _L a for operation conditions	1/s; 1/h
a	a-value	-
k _L a _{clean water}	k _L a from clean water tests	1/s; 1/h

fine bubble aeration: a = 0.2 to 0.9 (average: 0.6)
 surface/mechanical aeration: a = 0.7 to 1.8 (0.9)

The a-value – Influence of SRT

The a-value – Influence of MLSS/MLVSS

The **a-value** for different treatment processes and load cases

The **a-values** depends on :

- treatment processes
- cleaning objectives

Treatment process	a _{min}	a _{medium}	a _{max}
Denitrification-Nitrification	0,60	0,75	0,85
SBR-reactor with N-Elimination	0,50	0,65	0,80
MBR (TS ~ 12 g/L, t _{TS} = 25 d)	0,50	0,60	0,70
aerobic stabilisation	0,70	0,80	0,90
C-Elimination	0,35	0,50	0,60

[Günkel-Lange 2012]

Many **aeration systems** are **oversized** because:

- optimistic assumptions were made of future loads
- sized using the same forecasting as the treatment plant structures
- sized for unfavorable conditions and for too high loads
- sized with too high, and overlapping safety factors

- Systems should be sized for a range of load cases
- DWA M 229-1 (2013) give a new approach
- Determination of oxygen demand (OUR) for four different cases:
 - 1. average OUR
 - 2. maximum OUR for the actual situation
 - 3. minimum OUR
 - 4. OUR for the **predicted situation** or expansion

IWA

- New procedure for design of a fine bubble aeration system according to DWA-M 229 – 1 (2013)
- Input Parameters are determined according to DWA-A 131
- New edition of DWA-M 229 are in progress and will be published in 09/2017

Sensitivity of the calculation of SOTR

a: Alpha-value (-); OV_h : Oxygen demand (OUR) (kg/d); T_W : wastewater temperature (°C); c_X : oxygen concentration in aeration tank (mg/L); h_D : depth of submergence (m)

IWAR

technische

UNIVERSITÄT DARMSTADT

source: www.stol.it www.merkur.de www.shutterstock.com

IWAE

High salt concentrations in wastewater

- Seawater for toilet flushing (Hong Kong 3.5-6.5 g/L Cl⁻)
- Seawater intrusion into leaky sewers
- Industrial wastewater
- De-icing salt in winter

with salt 07.06.2017 | Institut IWAR | Prof. Dr.-Ing. habil. Martin Wagner 24

2.5

2.0

Effects of salt on oxygen transfer:

- Reduce the mass transfer (k_l)
- Increase the interfacial area (a)

Results in a net increase of the volumetric mass transfer $(k_l a)$

without salt

The *q*-value – Influence of Salt

IWAF

Influence of two parameters on oxygen transfer in WWTPs:

- Salt concentration
- Water temperature

Measurements from 2012 - 2015

07.06.2017 | Institut IWAR | Prof. Dr.-Ing. habil. Martin Wagner 25

Project EXPOVAL: Aeration under particular framework conditions

Federal Ministry of Education and Research

SPONSORED BY THE

Project EXPOVAL: Aeration under particular framework conditions

- Measurement of k_Lavalues in clean, salty and wastewater
- Dosage of salt into the reactor (up to 28 g/L)
- Fine bubble aeration system
- Depth of submergence up to 6 m

Project EXPOVAL: Aeration under particular framework conditions

- α-f_s-value describe the influence of salt and activated sludge in the aeration tank
- α·f_S-value obvious higher ⁴/₅
 than 1,0
- there is an correlation between electric conductivity (saltconcentration) and α-f_svalue

New design approach from the results of EXPOVAL

New equation for calculation of

standard clean water oxygen transfer rate (SOTR):

$$SOTR = \frac{f_d \cdot \beta_{St} \cdot C_{S,20} \cdot f_{S,St}}{(\alpha \cdot f_{S,\alpha}) \cdot (f_d \cdot \beta_{\alpha} \cdot C_{S,T} \cdot \frac{p_{atm}}{1.013} - C_X) \cdot \theta^{(T_W - 20)}} \cdot OV_h$$

SOTR:	Standard Oxygen Transfer Rate	[kgO ₂ /h]
OV _h :	Oxygen demand (OUR)	$[kgO_2/h]$
f _d :	depth factor	[-]
C _S :	O_2 saturation concentration	[mg/l]
β:	salt factor	[-]
f _s :	salt factor for a-value	[-]
a:	alpha-value	[-]

New design approach from the results of EXPOVAL

IWA

New equation for calculation of

standard clean water oxygen transfer rate (SOTR):

$$SOTR = \frac{f_d \cdot \beta_{St} \cdot C_{S,20} \cdot f_{S,St}}{(\alpha \cdot f_{S,\alpha}) \cdot (f_d \cdot \beta_{\alpha} \cdot C_{S,T} \cdot \frac{p_{atm}}{1.013} - C_X) \cdot \theta^{(T_W - 20)}} \cdot OV_h$$

Salt concentration (g/L)	S _{TDS,St}	S _{TDS,α}
reduce C _S (-)	$\beta_{St} = 1 - 0,01 \cdot S_{TDS,St}$	$\beta_{\alpha} = 1 - 0,01 \cdot S_{TDS,\alpha}$
increase k _L a (-)	$f_{S,St} = 1 + 0,08 \cdot S_{TDS,St}$	$f_{S,\alpha} = 1 + 0,08 \cdot S_{TDS,\alpha}$

New design approach from the results of EXPOVAL

- Validity of the new equation:
 - Only for municipal wastewater
 - For wastewater with high salt concentration as a consequence of sea water intrusion, predominant NaCl (investigation about the influence of other salts are in progress)
 - Only fine bubble aeration systems (not for mechanical/surface aeration)
- Publishing of the new DWA-M 229-1 in 09/2017

rkblatt DWA-M 229-1

Conclusions

- aeration systems are technically mature
- fine bubble aeration systems are state-of-the-art technology
- increasing electricity costs demand also for optimizations of:
 - design of aeration system
 - diffuser technology
- Many aeration systems are oversized: with new design approaches, the efficiency of aeration systems increase
- additional knowledge of oxygen transfer mechanisms necessary to further improve the efficiency of aeration systems

07.06.2017 | Institut IWAR | Prof. Dr.-Ing. habil. Martin Wagner | 32

Thanks you for your attention

Prof. Dr.-Ing. habil. Martin Wagner m.wagner@iwar.tu-darmstadt.de

Justus Behnisch, M.Sc. j.behnisch@iwar.tu-darmstadt.de

Anja Ganzauge, M.Sc. a.ganzauge@iwar.tu-darmstadt.de

TU Darmstadt, Institut IWAR Franziska-Braun-Straße 7 64287 Darmstadt Germany

www.iwar.tu-darmstadt.de

References

- **DWA-M 209**, 2007: Messung der Sauerstoffzufuhr von Belüftungseinrichtungen in Belebungsanlagen in Reinwasser und in Belebtschlamm.
- **DWA-M 229-1**, 2013: System zur Belüftung und Durchmischung von Belebungsanlagen Teil 1: Planung, Ausschreibung und Ausführung.
- Henkel, 2010: Oxygen Transfer Phenomena in Activated Sludge; PhD Thesis; Institut IWAR TU Darmstadt
- Wagner u. Stenstrom, 2014: Activated Sludge 100 Years and Counting; IWA Publishing

References

Günkel-Lange, 2012: Sauerstoffzufuhr und a-Werte feinblasiger Belüftungssysteme beim Belebungsverfahren, PhD Thesis; Institut IWAR TU Darmstadt

